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ABSTRACT

UNIVERSA MEDICINA

The role of molecular pathology in the precision diagnosis
and subclassification of hepatocellular carcinoma

Kathryn Effendi1, Wit Thun Kwa2, Akihisa Ueno1, Michiie Sakamoto1

Hepatocellular carcinoma (HCC) remains a leading cause of cancer death
worldwide despite recent advances in surveillance and therapeutic
management. The outcomes for HCC patients remain poor, often as a
result of late diagnosis or lack of effective treatments. Early detection
and precise diagnosis are evidently crucial in improving the prognosis of
HCC. However, HCC is a highly heterogeneous cancer with various clinical
backgrounds and altered molecular pathways; these factors make its
precise diagnosis more difficult. Approximately 25% of HCCs harbor
actionable mutations, which are yet to be translated into clinical practice.
In the era of precision medicine, molecular or genomic information are
indispensable for HCC diagnosis and prognosis. Exploring genomic
alterations has become a requirement for identifying the molecular
subtypes of HCC. Recent studies have introduced molecular markers to
help identify early HCC and to clarify its multistep process of
carcinogenesis. The subclassification of tumors into proliferation class
and nonproliferation class HCCs gives pointers to the HCC phenotype
and facilitates the selection of appropriate treatments. In this review, we
broadly summarize some of the latest insights into HCC subclassification
from the perspective of molecular pathology. Immunohistochemistry-
based subclassification allows improved characterization of HCC in daily
clinical practice. Moreover, analysis of the immune microenvironment,
intra-tumoral morphological heterogeneity, and imaging features gives
additional information regarding the classification of HCC. Combinations
of these approaches are expected to inform and advance the precision
diagnosis and management of HCC.
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INTRODUCTION

In 2020, liver cancer was the sixth most
common cancer and the third leading cause of
cancer-related deaths worldwide. Incidence rates
and mortality are two to three times higher in
men than in women, and liver cancer ranks fifth
in terms of global incidence and second in terms
of mortality for men. Hepatocellular carcinoma
(HCC) is the most common form of liver cancers,
accounting for ~90% of all liver cancers. It is
still the most common cancer in East and South-
East Asia and is the leading cause of cancer death
in Mongolia, Thailand, Cambodia, Egypt, and
Guatemala among both men and women.(1) A
study in Indonesia showed that there had been
no improvement in the median survival rate of
HCC for patients diagnosed in 2013–2014
compared with those diagnosed in 1998–1999.(2)

Hepatocellular carcinoma develops in
association with major risk factors such as
chronic infection with hepatitis B virus (HBV)
or hepatitis C virus (HCV), consumption of
aflatoxin B1-contaminated food, heavy alcohol
intake, and metabolic syndrome (type 2 diabetes,
obesity, and non-alcoholic fatty liver disease).(3)

Despite recent advances in the surveillance and
therapeutic management of HCC, prognosis is
still poor and the disease remains a global health
challenge.(4) Although the background conditions
vary from country to country, HCC itself has
diverse predisposing factors and genetic
susceptibilities. Moreover, hepatocarcinogenesis
is known to be a multistep process in which many
genetic signaling pathways are involved. These
characteristics result in HCC being an extremely
heterogeneous solid cancer; indeed, among the
tumor types so far identified, HCC is one of the
most highly heterogeneous.(5) In the era of
targeted molecular treatments as promising
therapies for advanced cancer, it is important to
understand the detailed nature of the
heterogeneous features of HCC. (3,6)

Consequently, a comprehensive analysis of the
morphologic, immunohistochemical, immune, and/
or mutational status of HCC is crucial to enhance

our understanding of hepatocarcinogenesis and
to improve the clinical management of HCC.

Clinical pathological assessment of HCC is
now possible based on its molecular landscape
and having a precise diagnosis has led to improved
therapeutic strategies.(7) Here, we discuss a broad
range of molecular targets that have been (or could
be) used to help define a more precise HCC
diagnosis and to more accurately reflect its
features based on pathological perspectives. The
understanding of molecular features that underline
HCC onset and progression is crucial for more
efficacious management approaches in the future.

Molecular markers of early HCCs
Hepatocellular carcinoma is characterized

by a clear multistage process of tumor
development. Many cases of HCC develop in
damaged livers related to chronic HBV or HCV
infection. Histopathologically, HCC starts as
premalignant dysplastic nodules (DN) and early
HCC (eHCC) before it develops to progressed
HCC.(8) The concept of eHCC, i.e., small nodules
with indistinct margins, has been accepted
internationally since 2009 and was officially
adopted in the fourth edition of the World Health
Organization (WHO) Classification of Tumors of
the Digestive System in 2010.(9,10) However, the
diagnosis of eHCC is often challenging because
it generally lacks obvious histological atypia, its
molecular mechanism is unclear, and it possesses
quite heterogeneous clinical behavior.
Nonetheless, recent advances in
immunohistochemical analysis using various
molecular markers have allowed us to carefully
evaluate eHCCs.

The heat-shock protein 70 (HSP70) gene is
a housekeeping gene that assists with a variety
of vital intracellular chaperoning functions.
Expression of HSP70 radually increases with the
stepwise progression of hepatocarcinogenesis, but
this is not observed in benign nodular lesions; this
fact makes HSP70 a useful marker for eHCC
and could clearly distinguish HCC from chronic
hepatitis or cirrhosis.(11) The expression profile
analyses of HSP70s from multiple databases such
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many solid and non-solid cancers; moreover, BMI-
1 was recently identified in association with the
epithelial–mesenchymal transition in cancer
cells.(20-23) Another study suggested that the forced
expression of BMI-1 promotes the malignant
transformation of hepatic progenitor cells, thereby
providing a link to its “stemness” properties and
neoplastic proliferation.(24)

Cyclase-associated protein 2 (CAP2) is also
involved in the progression of HCC. Cyclase-
associated protein 2 is a bifunctional protein in
which the N-terminal domain binds to adenylyl
cyclase and the C-terminal domain binds to
monomeric actin. Expression of CAP2 is not seen
in normal liver tissue but its expression increases
during HCC progression from DN, through
eHCC, to progressed HCC. Positive CAP2
expression was frequently seen in stromal
invasion, a characteristic feature of eHCC, and
high expression of CAP2 was correlated with poor
prognosis of patients with HCC.(25) Indeed, we
found that CAP2 was not only associated with
the process of skeletal muscle development, but
it was also significantly associated with tumor
size, poor differentiation, portal vein invasion, and
intrahepatic metastasis.(26) In the zebrafish, a
vertebrate model, the silencing of CAP2
expression resulted in the development of a
shorter body, which may have resulted from the
downregulation of actin by CAP2. Expression of
CAP2 was also found to be colocalized with actin
in the leading edge of the lamellipodium overlap
of HCC cells; moreover, migration assays showed
that CAP2 knockdown reduced cell motility.
These findings support the functional association
of high CAP2 expression and explain how it could
help promote invasive behavior in HCC cells. The
role of CAP2 in tumor progression is not observed
only in HCC: we found that CAP2 expression
also increased stepwise during the progression
of malignant melanoma and is upregulated in the
aggressive histologic type of epithelial ovarian
cancer.(27,28)

Extending the evaluation of detailed
histological features, such as scirrhous
components, with specific molecular markers,

as The Cancer Genome Atlas (TCGA) and
ONCOMINE show a significant increase in
HSP70s expression in HCC tissues.(12) Glypican-
3 (GPC3), a member of the heparan sulfate
proteoglycan family, is known to be upregulated
in HCC but is not detected in normal liver tissues
or benign liver lesions. The combination of GPC3
and alpha fetoprotein as markers for eHCC
increases the sensitivity to 76% for early-stage
tumors <3 cm in size.(13,14) Glutamine synthetase
(GS) catalyzes the synthesis of glutamine, which
is the major energy source for tumor cells.
Expression of GS was found to increase in a
stepwise manner from early to advanced HCC
and promotes invasion of HCC cells through
mediating the epithelial-mesenchymal transition
(EMT). (15) A recent report showed that
combination biomarkers significantly improved the
sensitivity of the panel for eHCC detection and
currently, the use of HSP70, GPC3, and GS is
established as a useful marker combination for
eHCC diagnosis.(16,17) This three-marker panel
can increase the diagnostic accuracy of liver
biopsies and was described in the fifth edition of
the WHO Classification of Tumors of the
Digestive System.(18)

Additional markers have also proven useful
in the diagnosis of eHCC. We previously reported
the upregulation of the polycomb group gene
member, B-lymphoma Mo-MLV insertion region
1 (BMI-1), in early-stage HCC.(19) The signaling
pathway of BMI-1 may allow cells to maintain
their self-renewal ability and may thereby link to
neoplastic proliferation by acting as a negative
regulator of the INK4a/ARF locus that encodes
two important tumor suppressor proteins in human
cancer, p16 and p19. We observed positive
expression of BMI-1 in HCC as high-intensity
dot patterns within the nucleus that may reflect
BMI-1 activity as a transcriptional repressor by
regulating chromatin silencing.(8) Expression of
BMI-1 was particularly observed in early and
well-differentiated HCCs, but not in the
surrounding liver tissue, a fact that should
facilitate the identification eHCC. The role of
BMI-1 in carcinogenesis has been reported for
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such as HSP70, BMI-1, and CAP2, showed that
small vaguely nodular lesions could be further
subclassified as low-grade eHCC (LGeHCC),
high-grade eHCC (HGeHCC), low-grade
dysplastic nodules (LGDN), or high-grade
dysplastic nodules (HGDN).(29) The investigation
of 66 small vaguely nodular lesions showed that
20 nodules were DN and 46 nodules (69.8%)
were eHCC. Among these 46 eHCCs, 18 nodules
(39.1%) showed marked stromal invasion and/or
the presence of a scirrhous component and were
subclassified as HGeHCC, whereas the
remaining 28 nodules (60.9%) did not show these
kinds of features and were subclassified as
LGeHCC. Positive immunohistochemical
expression of BMI-1 was found at lower rates in
LGDN but at higher rates in LGeHCC. The
difference between them was significant and
should prove useful to support differentiation
between premalignant dysplastic nodules and
eHCC. A stepwise increase in the
immunohistochemical expression of CAP2 was
also seen from LGDN to HGeHCC. A significant
expression of CAP2 in HGeHCC may already
indicate the malignant potential of HGeHCC
nodules, and that the transitional stage to
advanced HCC may already be present in
HGeHCC; as a result, the re-evaluation of
treatment strategies for eHCC may be needed.

Molecular subclassification of HCCs
Recent advances in molecular

subclassification by gene expression analysis have
facilitated a new understanding of the molecular
landscape of HCC. During the past two decades,
many studies have proposed HCC
subclassifications based on the molecular features
of the tumor. Molecular classification of HCC
proposed by Boyault, and Hoshida are widely
accepted. (30) Genome-wide transcriptome
microarray analysis and quantitative reverse-
transcription polymerase chain reaction data in a
series of 120 HCCs and 3 hepatocellular
adenomas by Boyault et al.(31) resulted in the
proposal of six robust subgroups of HCC, termed
G1–G6. Tumors classified in the G1–G3

subgroups were associated with high
chromosomal instability compared to tumors in
the G4–G6 subgroups. A previous study conducted
by Hoshida et al. (32) identified a certain
commonality between subclasses defined by a
meta-analysis that encompassed 603 HCC
patients from both Western and Eastern countries.
They revealed three robust HCC subclasses
(termed S1, S2, and S3) that could be associated
with clinical parameters and distinct biological
processes in hepatocarcinogenesis.(33) Subclasses
S1 and S2 are associated with large tumors and
poor histological differentiation. Characteristics
found to be similar in the S1 and S2 subgroups,
such as activation of the AKT pathway and
frequent p53 mutations, were also found in
Boyault’s G1–G3 groups. The less-aggressive S3
subclass (which retains a hepatocyte-like
phenotype) also resembles the G5 and G6
subgroups, showing associations with the Wnt/
β-catenin (CTNNB1) signaling pathway.

These concepts of HCC subclassification
are increasingly accepted worldwide, and many
gene alterations in HCC now can be associated
with molecular subclassifications. LGR5, also
known as G-protein-coupled receptor 49
(GRP49), has been well established as a target
of the Wnt/β-catenin signaling pathway,
particularly in colorectal cancer.(34) We also found
that LGR-5 is notably overexpressed in HCC
carrying β-catenin mutations. Stable clones of
LGR5-overexpressing HCC cells formed nodular
tumors with a tightly aggregated morphology,
whereas downregulation of LGR5 changed the
cells into a loosely associated morphology
resulting in enhanced infiltration and increased
cell motility.(35) Our findings regarding LGR5
function in HCC cells seem to be an exemplar of
Hoshida’s S3 subclass and Boyault’s G5–G6
subgroups.(36) The typical morphological and
biological features of LGR5 expression in HCC
may indicate a subset of the less-aggressive HCC
phenotype. Taken together, these studies suggest
that, despite highly variable clinical backgrounds
and molecular heterogeneity, HCCs may share a
similar gene-expression pattern. At present, data
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based on genomic profiling studies show that
HCCs can be roughly divided into two major
molecular clusters, namely the proliferation class
and the nonproliferation class. Patients with HCC
features consistent with the proliferation class may
have aggressive tumors, higher alpha fetoprotein
levels, moderate/poor cell differentiation, and
frequent vascular invasion. In contrast, the
nonproliferation class is characterized by a less
aggressive phenotype, better histologic
differentiation, and lower alpha fetoprotein
levels.(37,38)

Characterizing HCC based on its distinctive
molecular and clinical features is a prerequisite
for precision medicine because it provides more
accurate classification and diagnosis which allow
more effective treatment. Clinical trials for HCC
have suggested that targeted agents have different
efficacy in diverse populations because different
molecular pathways are involved in different HCC
patients.(39,40) However, performing genomic
profiling for every HCC case is not
straightforward in daily clinical practice.

Consequently, we have proposed an HCC
subclassification based on immunohistochemical
staining. Immunohistochemical analysis was
carried out for panels of several molecular
markers commonly used in HCC, and our findings
indicated that HCCs could be broadly divided into
three subclasses. The biliary/stem cell marker
positive subclass (B/S subclass) is indicated by
positive staining for cytokeratin 19 (CK19,
KRT19), sal-like protein 4 (SALL4), or epithelial
cell adhesion molecule (EpCAM); the Wnt/β-
catenin signaling-related marker positive subclass
(W/B subclass) is indicated by positive staining
for β-catenin or glutamine synthetase (GS); and
the negative subclass (-/- subclass) is indicated
when all markers are negative.(41) Representative
HCC cases associated with B/S or W/B subclass
are shown in Figure 1. The B/S subclass can be
further divided into two subgroups: CK19 and/or
SALL4 positive (B/S1 subgroup) and EpCAM
only positive (B/S2 subgroup). The B/S
subclasses, particularly the B/S1 subgroup, exhibit
poor tumor differentiation, increased frequency

Figure 1. Representative HCC cases with positive immunohistochemical expression for CK19, SALL4,
EpCAM, -catenin, and GS. HCC case with CK19+, SALL4+, and EpCAM+ was included as B/S subclass

(corresponds to negative GS staining); while HCC case with -catenin+ and GS+ was included as W/B
subclass. The two groups have been associated with different clinicopathological features. (41)

HE: hematoxylin and eosin staining. Scale bar = 100 µm.
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of portal vein invasion and/or intrahepatic
metastases, and highly proliferative activity. They
are also associated with the shortest recurrence
time. In contrast, the W/B subclass exhibits better
tumor differentiation, a decreased frequency of
portal vein invasion, and less proliferative
activity.(41) These subclasses partly overlap with
previous molecular subgroups from transcriptomic
methods: the B/S subclass shares some features
with the S2 and G1 subgroups, and the W/B
subclass roughly corresponds to the S3 and G5-6
subgroups (7) (Table 1). The HCC phenotype was
shown to be related to its molecular alterations
and underlying oncogenic pathways.(42)

Furthermore, recent studies showed that
cancer heterogeneity is also shaped by active
immune responses. Immune cells are important
elements of tumor tissues, and the amount of
immune cell infiltration considerably differs
among tumor types and histological subtypes.
Most of the hallmarks of cancer are enabled and

sustained to varying degrees by a tumor-
supporting microenvironment.(43,44) Hepatocellular
carcinoma is known to result from a complex
interplay between genetic and environmental
factors. Intervention in the immune
microenvironment of HCC may benefit the
management of HCC.(37,45) Recently, immune
checkpoint inhibitors (ICIs) have shown potential
as treatments for various cancers including HCC.
A study showed that nivolumab, a programmed
cell death protein-1 (PD-1) inhibitor, exhibited
favorable efficacy and safety as a treatment for
advanced HCC.(46) Nivolumab has since gained
approval from the U.S. Food and Drug
Administration for HCC patients previously
treated with sorafenib.(47) Although the use of
ICIs has been considered a promising approach
to treat advanced HCCs, some patients have
shown a limited response to such treatment. This
again suggests that identifying HCC subclasses
based on a combination of immune response and

Table 1. The concordance between different molecular subtyping methods for HCC

Note: ICIs = immune checkpoint inhibitors; number in parentheses = reference number in body text
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its association with clinicopathological findings is
important for predicting prognosis and therapeutic
efficacy.(45,48)

Our group showed that the immune
microenvironment of HCC can be classified into
three immune subtypes (namely, immune-high,
immune-mid, and immune-low) that have
additional prognostic impacts on histological and
molecular classifications of HCC. (49)

Comprehensive investigation of immune cells
through multiplex immunohistochemical analysis
of 919 regions of 158 HCCs indicated that
increased B-cell, plasma-cell, and T-cell
infiltrations were hallmarks of the immune-high
HCC subtype. Immune-high-predominant HCC
was found in nearly 20% of the
immunohistochemistry-based B/S1 subclass and
in less than 10% of the W/B subclass.
Interestingly, the immune-high subtype indicates
HCCs with better prognosis among poorly
CK19-positive and/or SALL4-positive high-
grade HCCs. However, the immunosubtypes
were not prognostically significant in W/B
HCC.(49) The immune-high subtype was also
significantly enriched in Hoshida’s S1 and
Boyault’s G2 subclasses, whereas the Immune-
low subtype was observed in Hoshida’s S3 and
Boyault’s G6 subclasses.(7) Recently, immune
factors have been shown to be involved in the
characterization of “cold tumor” phenotypes
which are more resistant to immunotherapies.(50)

HCCs with cold phenotype were associated with
Wnt/β-catenin mutations and decreased
infiltration of CD8+ T-cells into the tumor
tissues.(51) This is a great challenge since it can
promote immune escape and is less likely to
respond to ICIs therapy. As described
previously, around 30% of HCCs belong to the
immune exclusion class and are associated with
Hoshida’s S3, Boyault’s G5-6, and Kurebayashi’s
immune-low subtypes (Table1).(50-52) These
results highlight the importance of
comprehensive pathological evaluation of the
immune microenvironment in addition to the
standard histopathological and molecular
classification of HCCs.

Intratumoral morphological heterogeneity in
HCCs

The heterogeneous nature of HCC clearly
represents a challenge to the establishment of a
robust HCC classification system and HCC
treatments. Intratumor heterogeneity is defined
as distinct genetic alterations and phenotypes
between cancer cells within the same tumor
nodule. (53) Intratumor heterogeneity was
reportedly detectable in most HCC cases (20 of
23, 87%), and heterogeneity solely at the level of
morphology was found in 6 of 23 (26%) HCC
cases.(6) The extent of intratumor heterogeneity
varies considerably among HCC patients.
Individuals with primary lesions larger than 5 cm
showed a significantly higher extent of intratumor
heterogeneity.(54,55) Intratumor heterogeneity can
have major clinical consequences because the
different genetic alterations and phenotypes
between cancer cells, or between different tumor
nodules, may require different treatment
decisions.(53) Unlike many other cancers, HCC
has not seen the benefit of individualized
treatment due in part to intratumor
heterogeneity.(54) Therefore, from the perspective
of pathology, elucidating the relationship between
morphological pattern and genetic alterations in
HCCs is one way to gain further insight into
hepatocarcinogenesis and to attain the goal of
precision medicine.

Telomerase reverse transcriptase (TERT)
is a catalytic subunit of the enzyme telomerase
that is crucial for maintaining telomere elongation;
furthermore, TERT activation is considered to be
a fundamental step in tumorigenesis. Mutation in
the TERT promoter regions that could result in
increased TERT expression have been identified
in many cancers, including HCCs.(56,57) In HCCs,
TERT promoter mutations (TPMs) reportedly
occur at two hot spots: –124 base pairs (C228T),
and –146 base pairs (C250T) upstream of the
ATG translation start site. TPMs are also the most
frequently found somatic genetic alteration in
HCC, with an overall frequency of around
60%.(58-60) Interestingly, TPMs frequently occur
early in the development of HCC and are highly

Effendi, Kwa, Ueno, et al                                                                                  Molecular pathology in the precision diagnosis
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related to the stepwise process of
hepatocarcinogenesis. From a series of 168 liver
samples, TPMs were already identified in 6% of
LGDN, 19% of HGDN, and 61% of eHCC; in
contrast, other common gene mutations in HCC,
such as those of CTNNB1 or TP53, occurred at
a later stage.(61) These results show that TPMs
are early events involved in the transformation
of premalignant lesions to HCC; these findings
also provide evidence that eHCC should get more
attention as “HCC”.(7,62)

Our group analyzed a total of 189 fresh-
frozen liver tissue samples and found that 55%
had TPMs.(63) In a retrospective analysis, all
cross-sectional slides containing the whole tumor
area were re-assessed for morphological
histological patterns. The distribution percentage
of each histological pattern in the tumor area
for each HCC case was semi-quantitatively
calculated using a homogeneity index. We found
that HCCs with TPMs (TPM-positive HCCs)
clearly exhibited intratumoral morphological
heterogeneity as indicated by the smaller mean

homogeneity index (0.800 ± 0.117 vs 0.927 ±
0.096, p<0.0001). TPM-positive HCCs
displayed more diverse differentiation patterns,
i.e., usually characterized by two or more
histological differentiation patterns in each HCC
nodule; in contrast, TPM-negative HCCs more
often displayed single dominant patterns.
Furthermore, early, or well-differentiated
histological patterns were more commonly seen
in TPM-positive HCCs than in TPM-negative
HCCs (63) (Figure 2). We also noted that most
of our HCCs with heterogeneous patterns had
an HCV-related background and were likely to
be TPM-positive. Previously, multiplex molecular
profiling of HCC patients also revealed that
patients with a TERT promoter mutation were
more likely to be HCV positive rather than HBV
positive and likely corresponded to Hoshida’s
S3 subtype (Table 1).(39,64) HCV-induced HCC
development is thought to occur in a multistep
process that involves the initiation of neoplastic
clones accompanied by irreversible somatic
genetic/epigenetic alterations and progression in

Figure 2. Intratumoral morphological heterogeneity based on the presence of TERT promoter mutations.
Shown are representative gross specimens of a TERT promoter mutation (TPM)-positive HCC and a TPM-

negative HCC. Histological differentiation patterns in the whole tumor area were evaluated as area percentages
for each case of TPM-positive and negative HCC. TPM-positive HCC cases frequently displayed more variety

in differentiation patterns than TPM-negative cases.(63) Scale bar = 100 µm
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a carcinogenic tissue microenvironment.(65,66)

Although additional genetic alterations appear
to be required to develop clinically
heterogeneous HCCs, TPMs may act as a
precursor lesion in the early stage, as supported
by our observation indicating a possible role of
TPMs in HCCs with intratumoral heterogeneity.

The heterogeneous features of HCC might
also be investigated through patho-radiological
correlation studies. Several imaging modalities
are commonly used for diagnosing HCC, such
as ultrasound, computed tomography, and
magnetic resonance imaging (MRI). Gadoxetic
acid (synonymous with gadolinium ethoxybenzyl
diethylenetriaminepentaacetic acid, Gd-EOB-
DTPA), a gadolinium-based MRI contrast agent,
is a liver-specific (hepatobiliary) contrast agent
that has expanded the role of MRI in
simultaneously providing morphologic and
functional information about the hepatobiliary
system. Gadoxetic acid enters hepatocytes via
active transport by organic anion transporting
polypeptides (OATP1B1/3), and the resulting
insights into the cellular mechanism of
transportation have led to a better understanding
of the correlation between radiologic and
histologic features.(67,68)

Previous studies have shown that
OATP1B3 expression could be important for
evaluating the HCC tumor enhancement seen
in gadoxetic acid-enhanced MRI (EOB-
MRI).(69,70) We have observed that OATP1B3
expression decreases gradually during multistep
hepatocarcinogenesis from the dysplastic nodule
stage to progressed HCC. Moreover, different
nodules in HCC may exhibit different features
on EOB-MRI. HCC nodules with low intensity
on the hepatobiliary-phase of EOB-MRI
indicate a negative uptake of gadoxetic acid,
whereas high-intensity nodules indicate a
positive uptake. These nodules differentiated on
EOB-MRI likely have different gene signaling
alterations and HCC features. It has been
reported that OATP1B3 is a downstream
molecule of the Wnt/β-catenin signaling pathway,

and OATP1B3-upregulated HCC likely
represents a specific subgroup of Wnt/β-catenin-
activated HCC. (70) HCCs with mutations in
CTNNB1 are likely to be well-differentiated
tumors, as previously described in Boyault’s G5
and G6 subclasses or Hoshida’s S3 subclass.
Indeed, HCCs with aggressive phenotypes are
likely to have decreased OATP1B3 expression.
CTNNB1-mutated HCC is likely associated with
innate resistance to ICIs because it lacks
inflammatory cell infiltration. Because recent
studies have indicated that characterization of
the immune microenvironment of HCC is
important for predicting the effectiveness of
treatments, performing EOB-MRI may be
helpful in cases where immunotherapy is
considered.(71,72)

Over the past few decades, considerable
progress has been made in understanding the
epidemiology, risk factors, and particularly the
molecular features of HCC. However, the
incidence rates and cancer-specific mortality of
HCC continue to increase in many countries, and
by 2025 more than 1 million individuals are
predicted to be affected by HCC annually.(73-75)

There is no doubt that continuous investigations
on HCC heterogeneity features with
comprehensive and integrative multidisciplinary
approaches are still necessary to overcome HCC.

CONCLUSIONS

Hepatocellular carcinoma has variable
molecular features that affect the diagnosis,
treatment, and clinical outcome. Comprehensive
analysis at the level of pathological features,
including morphology, immune microenvironment,
and genomic status, combined with imaging
analysis is important to elucidate the
heterogeneous features of HCC. Integrated
analysis from pathological and molecular studies
will help elucidate the development of
hepatocarcinogenesis and facilitate precise
diagnosis as the fundamental basis on which to
develop the precision treatment of HCC.

Effendi, Kwa, Ueno, et al                                                                                  Molecular pathology in the precision diagnosis
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