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ABSTRACT 
BACKGROUND 

Identifying patients with intracerebral hemorrhagic (ICH) at high risk of mortality is crucial for timely 

intervention. Machine learning (ML) offers novel methodologies for precise predictive models for ICH.  

Therefore, the aim of this study was to develop an ML-based predictive model for 48-hour mortality in patients 

with acute hemorrhagic stroke.  

 

METHODS 

A cross-sectional study was conducted using secondary data from 657 patients diagnosed with acute ICH. 

Demographic, clinical, laboratory, and radiological variables were extracted from medical records. Data 

preprocessing included cleaning, normalization, and class balancing using the Synthetic Minority Oversampling 

Technique (SMOTE). Three supervised algorithms—Random Forest, Decision Tree, and Gaussian Naïve 

Bayes—were developed and evaluated using stratified 5-fold cross-validation. Model performance was 

assessed using accuracy, sensitivity, specificity, precision, recall, F1-score, and AUC. 

 

RESULTS 

Random Forest achieved the best overall performance for predicting 48-hour mortality, with an accuracy of 

84.77%, F1-score of 84.63%, and AUC of 80.51, outperforming Decision Tree (AUC 61.12) and Gaussian 

Naïve Bayes (AUC 82.94). Random Forest most accurately identified >48-hour survival, with high sensitivity 

(93.5%) and PPV (92.9%), while Naïve Bayes provided the most reliable positive classification for this category 

(PPV 99.0; specificity 94.2%). For ≤24-hour mortality, Naïve Bayes showed the best detection performance 

(sensitivity 85.4%; NPV 98.7%).  

 

CONCLUSION 

Machine learning, particularly the Random Forest algorithm, enables reliable prediction of 48-hour mortality 

in patients with acute ICH using basic clinical and radiological data available at admission. The model offers 

practical potential for early risk stratification in emergency and critical care settings. 
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INTRODUCTION 

 

Hemorrhagic stroke remains one of the most 

catastrophic neurological emergencies, 

contributing to a disproportionately high global 

burden of mortality and disability.(1,2) Ischemic 

stroke is the most common subtype, making up 

about 65–85% of all strokes, while intracerebral 

hemorrhage (ICH) represents 10–30% of cases 

globally.(3) Despite advances in neurocritical care 

and surgical management, ICH remains highly 

fatal.(4-6) Thirty-day mortality ranges from 30% to 

44%, reaching up to 50% in severe cases, with 

many deaths occurring within the first week.(7) 

One-year mortality remains high at approximately 

50–60%.(4) Early death, particularly within the 

first 10 days, is primarily associated with 

hematoma expansion, increased intracranial 

pressure, and secondary brain injury.(8-10) This 

acute and rapidly evolving phase represents a 

critical window in which accurate mortality 

prediction can guide clinical decision-making, 

resource prioritization, and treatment planning. 

Several prognostic scoring systems, 

including the ICH score and the acute physiology 

and chronic health evaluation II (APACHE II), 

have been developed to estimate mortality risk in 

ICH.(11,12) Although both instruments are clinically 

valuable, each has significant limitations. The ICH 

score depends on clinical and radiological 

interpretation, which may vary between evaluators 

and requires specialized expertise.(13) The 

APACHE II system, widely used in intensive care 

settings, often undergoes simplification to 

facilitate manual calculation, which may reduce 

predictive accuracy.(6) These limitations highlight 

the need for an adaptive, objective, and efficient 

approach capable of integrating multiple variables 

to improve prognostic accuracy in hemorrhagic 

stroke. 

Machine learning, a data-driven branch of 

artificial intelligence, offers the potential to 

address these challenges. By analyzing large, 

multidimensional datasets, machine learning 

algorithms can uncover complex and nonlinear 

interactions among clinical, laboratory, and 

radiological features that are often overlooked by 

conventional statistical models.(14) In the case of 

hemorrhagic stroke, this approach enables 

automated risk prediction based on patient-

specific information, providing an opportunity to 

improve precision and reliability in outcome 

forecasting.(15-17) 

Previous studies have explored machine 

learning applications in stroke prognosis; 

however, most research has focused on broad 

outcome measures, such as in-hospital or 30-day 

mortality.(18-22) Despite these advances, evidence 

remains limited for very short-term mortality 

prediction, especially to predict 48-hour mortality 

in acute hemorrhagic stroke. This outcome is 

clinically critical, as a large proportion of fatal 

events occur during the early acute phase, when 

intensive monitoring and therapeutic decisions are 

most influential.  

Although machine learning has shown 

promise, the current literature remains 

inconclusive regarding which machine-learning 

approach offers the most reliable and clinically 

applicable performance. An analysis of 3,489 

patients with acute ischemic stroke admitted to the 

intensive care unit, who survived and remained 

hospitalized beyond the first 48 hours, using data 

from the Medical Information Mart for Intensive 

Care IV (MIMIC-IV) database, demonstrated that 

machine-learning–based models have substantial 

capability in predicting the risk of in-hospital 

mortality in this clinical setting.(23) However, the 

study was conducted from intensive care settings 

and may not be directly applicable to earlier 

phases of care. 

Moreover, early risk stratification in the 

emergency department, where initial clinical 

decisions and triage occur, has been minimally 

explored in prior machine learning studies. 

Therefore, the present study aimed to develop and 

evaluate a machine learning–based predictive 

model for 48-hour mortality in patients with acute 

hemorrhagic stroke using emergency department-

based clinical data.  

 
METHODS 

 

Research design 

A cross-sectional study was performed 

involving the development of a machine learning 

model based on secondary data from patients 

diagnosed with ICH. The study was conducted at 

Dr. Zainoel Abidin Hospital, Banda Aceh, 

Indonesia. The dataset included clinical, 

laboratory, and neuroimaging variables obtained 

from    patients   diagnosed   with   ICH   between 
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January 2022 and December 2024. A supervised 

machine learning approach was implemented to 

develop a predictive model for 48-hour mortality 

in patients with acute intracerebral hemorrhage. 

The dataset was preprocessed through data 

cleaning, normalization, and exclusion of 

incomplete records. Class imbalance was 

addressed using the Synthetic Minority 

Oversampling Technique (SMOTE) to enhance 

model generalization across mortality categories. 

Three algorithms—Random Forest, Decision 

Tree, and Gaussian Naïve Bayes—were trained 

and validated using stratified 5-fold cross-

validation. Model performance was assessed 

through multiple metrics, including accuracy, 

precision, recall, F1-score, and the area under the 

receiver operating characteristic curve (AUC). 

 

Study subjects 

A consecutive sampling method was 

employed to include all eligible cases of ICH 

recorded between January 2022 and December 

2024. The inclusion criteria were: 1) adult patients 

aged 18 years or older with a confirmed diagnosis 

of ICH based on non-contrast head CT scans; 2) 

patients with complete clinical documentation 

encompassing medical history, laboratory 

investigations, and neuroimaging findings; and 3) 

patients who underwent stroke severity 

assessment using the National Institutes of Health 

Stroke Scale (NIHSS) at admission. The exclusion 

criteria encompassed: 1) patients with a primary 

diagnosis other than ICH; 2) patients presenting 

with complex comorbid conditions that could 

independently affect clinical outcomes; 3) patients 

with incomplete or inconsistent medical records; 

and 4) cases lost to follow-up during 

hospitalization.  

 

Sample size determination 

The minimum required sample size was 

estimated using the rule of thumb for machine 

learning classification analysis. The formula 

applied was n ≥ 10 × k × c, where n denotes the 

minimum sample size, k represents the number of 

predictor variables, and c signifies the number of 

outcome classes.(24) In the present study, 12 

independent variables were included, 

encompassing four clinical, four laboratory, three 

computed tomography (CT)-based variables, and 

one additional variable, with three outcome 

categories representing different mortality 

intervals. Applying the formula yielded a 

minimum of 360 patient records, which was 

determined to be adequate to ensure model 

stability and generalizability. 

 

Data collection 

Data were collected retrospectively from 

hospital medical records. Each entry in the dataset 

represented a single clinical episode of ICH. In 

cases where a patient experienced multiple 

admissions due to recurrent events, each 

hospitalization was considered a separate case to 

preserve data independence. Clinical data such as 

age, stroke onset, blood pressure, Glasgow coma 

scale (GCS), and National Institutes of Health 

Stroke Scale (NIHSS) scores were obtained from 

standardized hospital admission forms. 

Laboratory data, including leukocyte count and 

random blood glucose levels, were retrieved from 

hospital laboratory information systems. 

Neuroimaging data, including hemorrhage 

location, hematoma volume, and midline shift, 

were extracted from radiology reports verified by 

radiologists. Additional parameters such as 

surgical evacuation and pneumonia were derived 

from the patients’ treatment and progress notes. 

All data were reviewed and verified to ensure 

accuracy and completeness before entry into the 

analytical database. Missing values were managed 

using median imputation for numerical variables 

to reduce bias and preserve data variability. 

Categorical data were encoded numerically to 

enable computational analysis. Prior to modeling, 

exploratory data analysis was conducted to assess 

data distribution, identify outliers, and visualize 

potential relationships among variables. The 

complete dataset was then randomly divided into 

training and testing subsets, maintaining 

proportional representation of outcome classes. 

The training subset (80%) was used for model 

development and hyperparameter optimization, 

while the training (or testing) subset (20%) served 

for performance evaluation and external 

validation. 

 

Model development 

Model development was performed using 

Python software version 3.10 (Python Software 

Foundation, Beaverton, Oregon, USA) on the 

Google Collaboratory platform (Google LLC, 

Mountain View, California, USA). Data 

preprocessing steps included standardization of 

continuous variables and encoding of categorical 

variables to ensure algorithm compatibility. Three 

supervised machine learning algorithms were 

applied: Random Forest, Decision Tree, and Naïve 



Kemaladina I, Syahrul, Abidin TF, et al 

16                                                                                                                   Universa Medicina, Vol. 45 No. 1, 2026 

Bayes classifier. The Random Forest algorithm 

was utilized as an ensemble learning approach that 

integrates multiple decision trees to minimize 

overfitting and enhance predictive robustness. The 

Decision Tree model was implemented for its 

interpretability, as it allows visualization of 

hierarchical decision paths and facilitates 

understanding of variable interactions in clinical 

settings. The Naïve Bayes classifier, based on 

probabilistic reasoning, was chosen for its 

computational efficiency and suitability for small 

to medium-sized datasets. Hyperparameter tuning 

was conducted for each algorithm through grid 

search optimization to identify the parameter 

configurations that achieved the best predictive 

performance. The target output for all models was 

the 48-hour mortality classification, comprising 

three categories as previously defined. Model 

training involved fitting the algorithms to the 

training data, learning from patterns and 

interactions between input features and known 

outcomes. Feature importance ranking was 

derived primarily from the Random Forest model 

to identify the most influential predictors of short-

term mortality. Class imbalance was addressed 

using SMOTE to enhance model generalization 

across mortality categories. The three 

algorithms—Random Forest, Decision Tree, and 

Gaussian Naïve Bayes—were trained and 

validated using stratified 5-fold cross-validation. 

 

Outcome measurements 

The independent variables included 

demographic, clinical, laboratory, and 

neuroimaging parameters identified in prior 

literature as relevant predictors of mortality in 

hemorrhagic stroke. These parameters included 

patient age, time from symptom onset to hospital 

arrival, systolic blood pressure at admission, 

Glasgow Coma Scale (GCS) score, NIHSS score, 

leukocyte count, random blood glucose at 

admission, hemorrhage location, hematoma 

volume, presence of midline shift, surgical 

evacuation, and occurrence of pneumonia 

complications. The dependent variable was 48-

hour mortality, classified into three distinct 

outcome categories: death within 24 hours after 

onset, death within 24–48 hours after onset, and 

survival beyond 48 hours. 

 

Model evaluation 

Our model evaluation used a comprehensive 

set of performance metrics—sensitivity (recall), 

specificity, positive predictive value (PPV or 

precision), negative predictive value (NPV), F1-

score, and ROC-AUC, the latter being an overall 

measure of the model’s discriminatory ability.(25) 

These metrics were selected for their clinical 

relevance: sensitivity is crucial for identifying at-

risk patients (minimizing false negatives), while 

specificity helps reduce unnecessary 

interventions. Accuracy measures the overall 

proportion of correct classifications, while 

precision assesses the proportion of correctly 

identified positive cases among all positive 

predictions. Recall, also referred to as sensitivity, 

quantifies the proportion of actual positive cases 

correctly identified by the model. The F1-score, 

representing the harmonic mean of precision and 

recall, was employed to balance predictive 

capability, particularly in the presence of class 

imbalance. The AUC provided a comprehensive 

assessment of discriminative ability across 

multiple probability thresholds and was 

considered the most important indicator for 

evaluating clinical applicability.(25) All 

performance metrics were calculated using the 

scikit-learn and NumPy Python libraries. The 

algorithm demonstrating the highest AUC and F1-

score was selected as the optimal model due to its 

superior combination of accuracy, robustness, and 

generalizability. Cross-validation was performed 

to confirm model stability, and receiver operating 

characteristic (ROC) curves were constructed to 

visually compare classification performance 

among algorithms. 

 

Ethical approval 

The study protocol was reviewed and 

approved by the Ethics Committee for Health 

Research, Dr. Zainoel Abidin Hospital, Banda 

Aceh, Indonesia (Approval number: 060/ETIK-

RSUDZA/2025), in accordance with the 

principles of the Declaration of Helsinki. Written 

informed consent was obtained from the patients 

or their legal guardians prior to enrolment. 

 

RESULTS 

 

Characteristics of the included patients 

A total of 746 patients diagnosed with acute 

ICH were included in the analysis (Table 1). The 

mean age was 57.28 ± 12.19 years. Male patients 

constituted 57.1% of the cohort, whereas females 

accounted for 42.9%. Upon hospital admission, 

the mean GCS score was 11.23 ± 3.49, while the 

mean NIHSS score was 15.49 ± 8.01, indicating a 

wide spectrum of neurological deficits from mild 
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to severe. The mean systolic blood pressure on 

arrival was 189.20 ± 30.33 mmHg. The mean 

random blood glucose level was 141.78 ± 50.06 

mg/dL. The mean leukocyte count was 11,911.17 

± 3,921.74/µL. Radiological evaluation revealed 

the presence of midline shift in 572 patients 

(76.68%). Regarding clinical outcomes, 605 

patients (81.1%) survived beyond 48 hours, 31 

patients (4.2%) died within 24–48 hours, and 49 

patients (6.6%) died within the first 24 hours. 

Clinical outcome data were incomplete for 61 

patients (8.2%).  

 

Table 1. General characteristics of the research 

subjects (n=746) 

Variable n (%) 

Age (years) 57.28 ± 12.19 

Sex 
 

Male 57.1 

Female 42.9 

GCS score 11.23 ± 3.49 

NIHSS score 15.49 ± 8.01 

Systolic blood pressure (mmHg) 189.20 ± 30.33 

Random blood glucose (mg/dL) 141.78 ± 50.06 

Leukocyte count (/µL) 11,911.17 ± 3,921.74 

Radiological findings 
 

Midline shift 572 (76.7) 

Clinical outcomes 
 

Survived >48 h 605 (81.1) 

Died 24–48 h 31 (4.2) 

Died <24 h 49 (6.6) 

Unknown 61 (8.2) 

Note: Data presented as mean ± SD, except sex, radiological 

findings and clinical outcomes: n (%). GCS: Glasgow coma 

scale; NIHSS: National Institutes of Health stroke scale 

 

Data preprocessing 

The dataset comprised demographic, clinical, 

laboratory, radiological, and outcome variables 

from 746 patients with acute ICH. The primary 

outcome variable categorized mortality into three 

groups: survival beyond 48 hours, death within 

24–48 hours, and death within 24 hours. 

Preprocessing began with exploratory data 

analysis, which included evaluation of variable 

distribution, data types, outlier detection, and 

assessment of missing values. Missing data were 

identified across several variables, with the 

highest proportion being observed in GCS 

(7.91%) and systolic blood pressure (7.77%). The 

proportion of missing values was below 10% for 

all variables, indicating that deletion of 

incomplete cases would not substantially bias the 

analysis. Consequently, records containing 

missing data were excluded to preserve dataset 

integrity and analytical consistency. Subsequent 

data cleaning included verification of variable 

consistency, correction of data entry errors, and 

alignment of variable formats according to the 

operational definitions. Several ordinal variables 

initially stored as numeric values were recoded to 

reflect categorical classifications. After 

preprocessing, 657 complete cases were retained 

for model development. The cleaned dataset 

accurately represented the clinical spectrum of 

patients and ensured valid input for the modeling 

phase.  

The distribution of clinical outcomes after the 

cleaning process showed 588 patients who 

survived >48 hours (89.5%), 28 patients who died 

within 24–48 hours (4.3%), and 41 patients who 

died within <24 hours (6.2%). The number of 

deaths was substantially lower than the number of 

survivors, creating a class imbalance. This 

condition poses a risk of prediction bias, in which 

the model becomes more likely to classify patients 

as survivors, reflecting the majority class. To 

address this issue, the Synthetic Minority 

Oversampling Technique (SMOTE) was applied 

to generate new synthetic samples in the minority 

classes. This approach enables the model to be 

trained on a more balanced distribution, thereby 

improving its ability to detect patients at high risk 

of mortality. The data distribution following the 

application of the SMOTE technique shows a 

balanced composition, with each class represented 

by 588 patients. 

The feature importance analysis of the 

Random Forest model after applying SMOTE to 

the full dataset provides an overview of the 

relative contribution of each variable in predicting 

clinical outcomes (Figure 1). The GCS score 

emerged as the most dominant predictor, 

contributing 19.92%, indicating that the patient’s 

level of consciousness is the most influential 

factor in determining the outcome. Leukocyte 

count ranked second with a contribution of 

11.47%, followed by the NIHSS score at 10.54% 

and blood glucose level at 9.28%, demonstrating 

that neurological and inflammatory parameters 

play key roles in model prediction. Blood pressure 

showed a moderate contribution (8.82%), whereas 

age, evacuation, midline shift, hemorrhage 

location, and hematoma volume had relatively 

lower influences, with values ranging from 5–8%. 

Onset and pneumonia exhibited the smallest 

contributions, at 3.78% and 2.81% respectively, 

indicating that these variables were less significant 

in the model compared with the others. 
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Figure 1. Feature importance plot of the Random Forest model after applying SMOTE to the entire dataset. The 

GCS score is the strongest predictor of clinical outcomes (19.92%), followed by leukocyte count (11.47%), 

NIHSS score (10.54%), and blood glucose level (9.28%). Other variables, including blood pressure, age, 

hemorrhage location, midline shift, hematoma volume, onset, and pneumonia, show smaller contributions, 

indicating a relatively lower influence on the model’s predictions. 

 

Model evaluation 

Random Forest achieved the highest 

accuracy at 84.77%, precision of 84.57%, recall of 

84.77%, F1-score of 84.63%, and AUC of 80.51% 

(Table 2). The balanced precision and recall 

values indicate consistent performance across 

survival and mortality classes. Decision Tree 

reached an accuracy of 80.98% and precision of 

85.24%, with a lower AUC of 61.12%, suggesting 

limited discrimination despite adequate 

classification capacity. Gaussian Naïve Bayes 

recorded the lowest accuracy at 68.35%, but 

attained the highest precision (89.83%) and an 

AUC of 82.94%, reflecting acceptable 

discrimination but weaker sensitivity for mortality 

detection. Overall, Random Forest emerged as the 

most optimal algorithm, showing the best trade-

off between accuracy, sensitivity, and F1-score, 

consistent with its ensemble architecture that 

mitigates the limitations of single-tree models. 

Decision Tree remained valuable for 

interpretability, while Naïve Bayes provided a 

computationally efficient yet less balanced 

alternative. 

 

Table 2. Comparative performance of three machine learning models—Random Forest, Decision Tree, 

and Naïve Bayes (Gaussian)—based on key evaluation metrics, including accuracy, precision, recall, 

F1-score, and area under the curve 

Model 
Accuracy 

(%) 
Precision (%) Recall (%) F1-score (%) AUC (%) 

Random Forest 84.77 84.57 84.77 84.63 80.51 

Decision Tree 80.98 85.24 80.98 82.90 61.12 

Naïve Bayes (Gaussian) 68.35 89.83 68.35 75.18 82.94 

Note : AUC : area under curve 
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Table 3. Comparative performance of Random Forest, Decision Tree, and Naïve Bayes models in 

predicting 48-hour mortality in acute intracerebral hemorrhagic stroke, evaluated using class-specific 

sensitivity, specificity, positive predictive value, and negative predictive value across ≤24-hour, 24–

48-hour, and >48-hour outcome categories 

Model Class Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

Random Forest ≤24 hours 14.6 94.2 14.3 94.3  
24–48 hours 3.6 96.5 4.3 95.7  
>48 hours 93.5 39.1 92.9 41.5 

Decision Tree ≤24 hours 29.3 91.1 17.9 95.1  
24–48 hours 3.6 94.6 2.9 95.7  
>48 hours 88.4 49.3 93.7 33.3 

Naïve Bayes ≤24 hours 85.4 71.3 16.5 98.7  
24–48 hours 3.6 96.2 4.0 95.7  
>48 hours 70.7 94.2 99.0 27.4 

Note : PPV : positive predictive value; NPV : negative predictive value 

 

Random Forest demonstrated the strongest 

performance for predicting survival beyond 48 

hours, with high sensitivity (93.5%) and PPV 

(92.9%), indicating robust identification of 

patients unlikely to experience early mortality, 

although specificity remained limited (39.1%) 

(Table 3). Decision Tree showed a similar pattern 

for the >48-hour category, achieving high 

sensitivity (88.4%) and PPV (93.7%), but with 

moderate specificity (49.3%). Naïve Bayes 

yielded the highest PPV for >48 hours (99.0%) 

with high specificity (94.2%), suggesting highly 

reliable positive classification, albeit with lower 

sensitivity (70.7%). For the ≤24-hour category, 

Naïve Bayes outperformed the other models in 

sensitivity (85.4%) and NPV (98.7%), reflecting 

superior detection of very early mortality, whereas 

Random Forest and Decision Tree exhibited 

limited sensitivity despite high specificity. Across 

all models, prediction of the intermediate 24–48-

hour category was consistently poor, with 

sensitivity remaining very low (3.6%) despite high 

specificity (>94%) and NPV (>95%), indicating 

persistent difficulty in discriminating this time 

window. 

The Random Forest model achieved superior 

class balance, accurately identifying patients with 

acute mortality within 24 hours (93.2%) and 

maintaining stable detection performance across 

other outcome categories (Figure 2). Although 

misclassification occurred in some patients 

surviving beyond 48 hours, the model had more 

consistent prediction stability compared with 

Decision Tree and Naïve Bayes. Decision Tree 

achieved good accuracy for early mortality (<24 

hours) but struggled to distinguish patients who 

died within 24–48 hours from survivors. Gaussian 

Naïve Bayes demonstrated a strong bias toward 

the survival class, correctly predicting most 

survivors but misclassifying the majority of 

mortality cases, reflecting the limitation of the 

independence assumption among clinical 

variables. In summary, Random Forest provided 

the most reliable and clinically applicable 

performance for early mortality prediction in 

patients with acute intracerebral hemorrhage. The 

model demonstrated stable accuracy, balanced 

sensitivity and specificity, and robust 

discriminatory power across multiple evaluation 

metrics. 

Table 4 presents the evaluation results of the 

primary model using 12 features and the 

comparison model using 11 features after the 

hemorrhage evacuation variable was removed. In 

the primary model, the Random Forest algorithm 

demonstrated the strongest performance, with an 

accuracy of 84.77%, precision of 84.57%, recall of 

84.77%, F1-score of 84.63%, and AUC of 

80.51%. The balanced combination of high 

accuracy and F1-score indicates that Random 

Forest maintained consistent predictive ability for 

both survival and mortality classes. After the 

hemorrhage evacuation feature was excluded, the 

model performance decreased only slightly, with 

an accuracy of 84.30%, F1-score of 84.20%, and 

AUC of 80.30%. This minimal change suggests 

that the hemorrhage evacuation variable did not 

exert a significant influence on model 

performance, allowing the model to remain stable 

even when the feature was removed. 

For the Decision Tree algorithm, the primary 

model with 12 features produced an accuracy of 

80.98%, precision of 85.24%, recall of 80.98%, 

F1-score of 82.90%, and AUC of 61.12%. After 

the hemorrhage evacuation feature was excluded, 

the model performance remained relatively stable, 

with a slight improvement in AUC to 63.50%, 

while accuracy and F1-score remained within the 
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range of 80.50–83.60%. These findings indicate 

that the hemorrhage evacuation feature did not 

contribute meaningfully to the discriminative 

capability of the Decision Tree model and may 

have introduced minor noise in the classification 

process. 

 

 

 
Figure 2. A heatmap-based confusion matrix derived from four machine-learning algorithms (Random Forest, 

Decision Tree, and Gaussian Naive Bayes) illustrates the distribution of predicted outcomes for patients with 

acute intracerebral hemorrhage compared with the actual clinical status. Darker shading indicates a higher 

proportion of correct classifications, with the Random Forest model demonstrating the most consistent 

performance, particularly in the group of patients who survived beyond 48 hours 
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Table 4. Performance metrics of machine-learning algorithms using 12 features vs. 11 features 

Algorithm Metric Model with 12 Features (%) Model with 11 Features (%) 

Random Forest Accuracy 84.77 84.30  
Precision 84.57 84.10  
Recall 84.77 84.30  
F1-score 84.63 84.20  
AUC 80.51 80.30 

Decision Tree Accuracy 80.98 82.20  
Precision 85.24 85.20  
Recall 80.98 82.20  
F1-score 82.90 83.60  
AUC 61.12 63.00 

Naïve Bayes Accuracy 68.35 69.60  
Precision 89.83 89.70  
Recall 68.35 69.60  
F1-score 75.18 76.20  
AUC 82.94 83.10 

 

 

 

 
Figure 3. Receiver operating characteristic (ROC) curves from the evaluation of three machine-learning 

algorithms—Random Forest, Naive Bayes, and Decision Tree—in predicting mortality among patients with 

acute intracerebral hemorrhagic stroke 

 

In contrast, the Gaussian Naive Bayes 

algorithm exhibited more variable performance. In 

the primary model,  the accuracy was  68.35%, 

precision 89.83%, recall 68.35%, F1-score 

75.18%, and AUC 82.94%. After the hemorrhage 

evacuation feature was removed, the model 

demonstrated consistent improvement, with an 

accuracy of 69.60%, F1-score of 76.20%, and 

AUC of 83.10%. This improvement suggests that 

in probabilistic models such as Naive Bayes, 
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removing features that are not fully independent of 

other variables can enhance prediction stability by 

reducing irrelevant redundancy or potential bias. 

Figure 3 illustrates that the ROC curve for 

the Random Forest algorithm demonstrates 

excellent classification performance across all 

time-to-death categories. The model achieved an 

AUC of 0.858 for ≤24 hours, 0.699 for 24–48 

hours, and 0.865 for >48 hours, with a micro-AUC 

of 0.956 and a macro-AUC of 0.808. These values 

indicate strong discriminative ability in 

distinguishing high-risk patients from those who 

survive, particularly in the ≤24-hour and >48-hour 

periods. The curve approaching the upper-left 

corner of the plot reflects optimal sensitivity and 

specificity, positioning Random Forest as the most 

stable and accurate algorithm among the three. 

The ROC curve for the Decision Tree 

algorithm shows relatively lower classification 

performance compared with the other two 

algorithms. The AUC values were 0.598 for ≤24 

hours, 0.481 for 24–48 hours, and 0.683 for >48 

hours, with a micro-AUC of 0.866 and a macro-

AUC of 0.588. The distance of the curve from the 

ideal diagonal indicates limited discriminative 

ability, especially in predicting mortality in the 

24–48-hour interval. These findings highlight the 

tendency of Decision Tree models to overfit the 

training data, resulting in reduced performance 

when applied to the test set. 

The ROC curve for the Naive Bayes 

algorithm demonstrates good performance, 

although slightly below that of Random Forest. 

The model achieved AUC values of 0.875 for ≤24 

hours, 0.688 for 24–48 hours, and 0.883 for >48 

hours, with a micro-AUC of 0.894 and a macro-

AUC of 0.817. These findings indicate that Naive 

Bayes provided consistent predictions for the ≤24-

hour and >48-hour periods, with a noticeable drop 

in performance for the 24–48-hour category. 

Nevertheless, the curve's proximity to the ideal 

area suggests that the model maintains favorable 

sensitivity and accuracy in identifying patients at 

high risk of mortality. 

 

DISCUSSION 

 
In the present study, three machine learning 

algorithms—Random Forest, Decision Tree, and 

Gaussian Naïve Bayes—were compared to 

develop a predictive model for 48-hour mortality 

in patients with acute intracerebral hemorrhage. 

Other algorithms such as support vector machine 

(SVM), logistic regression, extreme gradient 

boosting (XGBoost), artificial neural network 

(ANN), and K-nearest neighbor (KNN) were not 

included at this stage of model development. The 

stratified 5-fold cross-validation results 

demonstrated that Random Forest achieved the 

best overall performance, with an accuracy of 

84.77%, F1-score of 84.63%, and AUC of 

80.51%. The superiority of the Random Forest 

model can be attributed to its ensemble 

architecture, which aggregates multiple decision 

trees to capture complex non-linear interactions 

among clinical variables, thereby enhancing both 

stability and generalizability.(26) This finding is 

consistent with previous studies reporting that 

Random Forest provides higher predictive 

reliability than single-tree models in clinical 

outcome prediction.(26,27) 

The Decision Tree model, while conceptually 

simple and highly interpretable, showed limited 

predictive power with an AUC of only 61.12%. A 

high rate of misclassification was observed, 

particularly in cases where survivors were 

incorrectly predicted as non-survivors. This 

outcome highlights the inherent limitation of 

single-tree models, which often fail to capture the 

heterogeneity and complex interdependence 

among clinical predictors in medical datasets. 

Despite these limitations, the Decision Tree 

algorithm remains valuable for exploratory 

analysis and identifying key mortality-related 

predictors due to its transparent rule-based 

structure. Furthermore, the Gaussian Naïve Bayes 

model displayed a strong bias toward the survival 

category, demonstrating high precision but low 

recall for mortality detection. This pattern aligns 

with the model’s underlying assumption of 

predictor independence, which is rarely met in 

multifactorial clinical data. Nonetheless, the 

relatively high AUC of 82.94% suggests that this 

algorithm retains a satisfactory discriminatory 

capacity and may serve as a complementary model 

when computational simplicity is prioritized. 

Confusion matrix visualization confirmed 

these findings. The Random Forest model 

achieved the highest accuracy in identifying 

patients who died within 24 hours (93.2%), 

followed by Decision Tree, which produced 

similar but less consistent results due to frequent 

misclassification between the 24–48-hour and 

>48-hour survival categories. In contrast, the 

Naïve Bayes model tended to predict most cases 

as long-term survivors (>48 hours), resulting in 

diminished sensitivity for acute mortality 

detection. 
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The present findings align closely with 

previous studies demonstrating the robustness of 

Random Forest in stroke mortality prediction. 

Abujaber et al.(19) reported a higher accuracy 

(0.954) using a multiethnic registry dataset, which 

may be explained by a larger and more diverse 

sample compared with the single-center dataset 

used in the present study. Nonetheless, the 

consistent advantage of Random Forest across 

studies underscores its reliability as a predictive 

framework. Similarly, Peng et al.(27) found that 

Random Forest outperformed artificial neural 

networks (ANN), support vector machines 

(SVM), and logistic regression in predicting 30-

day mortality among patients with spontaneous 

ICH, with an AUC of 0.87, corroborating the 

present findings.  

Differences between studies are likely 

influenced by sample size, feature selection, and 

model parameterization. In contrast, the present 

study demonstrated that Random Forest was 

superior to Decision Tree in detecting 48-hour 

mortality, a clinically significant endpoint often 

overlooked in previous studies. Fernandez-

Lozano et al.(26) further support the robustness of 

Random Forest, showing strong predictive power 

for both short- and medium-term outcomes (AUC 

range: 0.79–0.95). 

When the performance of the present study’s 

model is compared to previously published 

research, it becomes evident that the locally 

developed Random Forest model achieved 

favorable results (AUC 0.805; F1-score 0.846) 

despite focusing on a narrower, early mortality 

endpoint (within 48 hours). Although the AUC 

value was slightly lower than that reported in 

studies with larger multicenter datasets, the 

consistent stability of Random Forest in early 

mortality prediction highlights its applicability to 

local clinical data.(26) The results also indicate that 

model performance depends strongly on the type 

of clinical outcome, the algorithm used, and 

dataset characteristics. Logistic regression 

demonstrated high accuracy in long-term 

mortality prediction, whereas Decision Tree 

performed best in in-hospital mortality 

prediction.(27,28) Conversely, the present study 

confirmed that Random Forest remained robust 

for short-term mortality prediction, reflecting its 

capacity to handle nonlinear relationships and 

class imbalance. 

The findings of the present study differ from 

a similar previous study that identified other 

machine learning approaches, particularly 

gradient boosting or regression-based models, as 

the optimal predictors of stroke-related mortality. 

While the study of Cummins et al.,(23) conducted 

in intensive care unit settings, reported superior 

performance of models such as XGBoost or 

logistic regression; the present study demonstrated 

that Random Forest achieved the most reliable 

performance for predicting 48-hour mortality in 

acute intracerebral hemorrhage using emergency 

department data. This discrepancy may reflect 

differences in clinical context, stroke subtype, data 

availability, and outcome timeframe. Specifically, 

early mortality prediction in hemorrhagic stroke 

relies on rapidly obtainable and often 

heterogeneous variables, a setting in which 

ensemble bagging methods such as Random 

Forest may be more robust than boosting or 

parametric models. These contrasting results 

underscore that the optimal machine learning 

approach for stroke mortality prediction is highly 

context-dependent rather than universal. 

In the present study, Decision Tree yielded 

the lowest performance among all models, being 

characterized by reduced AUC and F1-score 

values. This limitation can be explained by the 

model’s tendency toward overfitting, where 

decision boundaries are excessively tailored to the 

training data, reducing its generalizability to new 

datasets.(28,29) This effect is exacerbated in 

complex clinical data, such as hemorrhagic stroke, 

where predictor interactions are often nonlinear 

and interdependent. Furthermore, Decision Tree 

models are sensitive to noise and class imbalance, 

both of which are common in medical datasets.(29) 

In contrast, ensemble methods such as Random 

Forest mitigate these issues by combining multiple 

trees, thus reducing variance and improving model 

stability.(30) 

From a clinical perspective, the present study 

contributes novel evidence supporting the role of 

machine learning, especially Random Forest, as an 

effective tool for early outcome prediction in 

hemorrhagic stroke. The focus on the early phase 

(within 48 hours) represents a unique aspect rarely 

explored in previous research, offering valuable 

insight for acute decision-making. 

Implementation of such predictive models in 

emergency and critical care settings could assist 

physicians in promptly identifying high-risk 

patients using basic clinical and radiological 

parameters—such as GCS, NIHSS, systolic blood 

pressure, random blood glucose, and CT 

findings—available upon admission. This would 

allow prioritization of high-risk individuals for 
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intensive monitoring or surgical intervention, 

potentially improving survival outcomes. 

Furthermore, although Random Forest provided 

the most balanced performance, simpler models 

such as logistic regression may remain useful in 

ischemic stroke or settings with limited 

computational resources. These models are more 

interpretable and transparent, aligning with the 

practical needs of clinicians in low-resource 

environments.  

Several limitations should be acknowledged 

when interpreting these findings. First, 

biochemical variables and comorbid conditions 

were not comprehensively analyzed. Factors such 

as lipid profiles, renal function, coagulation 

parameters, and chronic disease history (including 

diabetes mellitus, cardiovascular disease, and 

chronic kidney disease) are known to influence 

both the severity of intracerebral hemorrhage and 

recovery trajectories. Exclusion of these variables 

may have reduced the model’s ability to capture 

certain mortality determinants. Second, the 

generalizability of the models is limited by the 

single-center design. As a tertiary referral hospital, 

Dr. Zainoel Abidin Hospital, Banda Aceh, 

primarily manages patients with more severe 

presentations, which may not represent the full 

clinical spectrum encountered in smaller 

healthcare facilities or primary care centers. 

Consequently, the predictive performance of the 

models may differ in other settings with distinct 

population characteristics, healthcare resources, or 

clinical management protocols. Future research 

should aim to validate the models using 

multicenter or national datasets encompassing 

diverse populations and broader clinical variables. 

Expanding data sources would not only enhance 

external validity but also facilitate development of 

hybrid models capable of predicting both 

mortality and functional outcomes, ultimately 

improving the clinical utility of machine learning 

applications in stroke care. 

 

CONCLUSIONS 

 
Machine learning, particularly the Random 

Forest algorithm, demonstrated strong capability 

in predicting 48-hour mortality among patients 

with acute ICH. Using readily available clinical 

and radiological variables, the model achieved 

high accuracy and robust discrimination, 

confirming the suitability of ensemble methods for 

complex clinical data. The focus on 48-hour 

mortality prediction provides valuable potential 

for rapid risk stratification and clinical decision 

support in acute stroke care. Broader validation 

across multicenter datasets and inclusion of 

additional variables such as biochemical markers 

and comorbidities are recommended to enhance 

model generalizability and clinical applicability. 
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