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ABSTRACT
BACKGROUND
Identifying patients with intracerebral hemorrhagic (ICH) at high risk of mortality is crucial for timely
intervention. Machine learning (ML) offers novel methodologies for precise predictive models for ICH.
Therefore, the aim of this study was to develop an ML-based predictive model for 48-hour mortality in patients
with acute hemorrhagic stroke.

METHODS

A cross-sectional study was conducted using secondary data from 657 patients diagnosed with acute ICH.
Demographic, clinical, laboratory, and radiological variables were extracted from medical records. Data
preprocessing included cleaning, normalization, and class balancing using the Synthetic Minority Oversampling
Technique (SMOTE). Three supervised algorithms—Random Forest, Decision Tree, and Gaussian Naive
Bayes—were developed and evaluated using stratified 5-fold cross-validation. Model performance was
assessed using accuracy, sensitivity, specificity, precision, recall, F1-score, and AUC.

RESULTS

Random Forest achieved the best overall performance for predicting 48-hour mortality, with an accuracy of
84.77%, F1-score of 84.63%, and AUC of 80.51, outperforming Decision Tree (AUC 61.12) and Gaussian
Naive Bayes (AUC 82.94). Random Forest most accurately identified >48-hour survival, with high sensitivity
(93.5%) and PPV (92.9%), while Naive Bayes provided the most reliable positive classification for this category
(PPV 99.0; specificity 94.2%). For <24-hour mortality, Naive Bayes showed the best detection performance
(sensitivity 85.4%; NPV 98.7%).

CONCLUSION

Machine learning, particularly the Random Forest algorithm, enables reliable prediction of 48-hour mortality
in patients with acute ICH using basic clinical and radiological data available at admission. The model offers
practical potential for early risk stratification in emergency and critical care settings.

Keywords: Intracerebral hemorrhage, machine learning, early mortality, predictive model, 48-hour.
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INTRODUCTION

Hemorrhagic stroke remains one of the most
catastrophic neurological emergencies,
contributing to a disproportionately high global
burden of mortality and disability.("? Ischemic
stroke is the most common subtype, making up
about 65-85% of all strokes, while intracerebral
hemorrhage (ICH) represents 10-30% of cases
globally.® Despite advances in neurocritical care
and surgical management, ICH remains highly
fatal. - Thirty-day mortality ranges from 30% to
44%, reaching up to 50% in severe cases, with
many deaths occurring within the first week.”)
One-year mortality remains high at approximately
50-60%.% Early death, particularly within the
first 10 days, is primarily associated with
hematoma expansion, increased intracranial
pressure, and secondary brain injury.®'9 This
acute and rapidly evolving phase represents a
critical window in which accurate mortality
prediction can guide clinical decision-making,
resource prioritization, and treatment planning.

Several  prognostic ~ scoring  systems,
including the ICH score and the acute physiology
and chronic health evaluation I1I (APACHE II),
have been developed to estimate mortality risk in
ICH."12 Although both instruments are clinically
valuable, each has significant limitations. The ICH
score depends on clinical and radiological
interpretation, which may vary between evaluators
and requires specialized expertise.!* The
APACHE II system, widely used in intensive care
settings, often undergoes simplification to
facilitate manual calculation, which may reduce
predictive accuracy.® These limitations highlight
the need for an adaptive, objective, and efficient
approach capable of integrating multiple variables
to improve prognostic accuracy in hemorrhagic
stroke.

Machine learning, a data-driven branch of
artificial intelligence, offers the potential to
address these challenges. By analyzing large,
multidimensional datasets, machine learning
algorithms can uncover complex and nonlinear
interactions among clinical, laboratory, and
radiological features that are often overlooked by
conventional statistical models.!® In the case of
hemorrhagic stroke, this approach enables
automated risk prediction based on patient-
specific information, providing an opportunity to
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improve precision and reliability in outcome
forecasting.!>17

Previous studies have explored machine
learning applications in stroke prognosis;
however, most research has focused on broad
outcome measures, such as in-hospital or 30-day
mortality.13-2? Despite these advances, evidence
remains limited for very short-term mortality
prediction, especially to predict 48-hour mortality
in acute hemorrhagic stroke. This outcome is
clinically critical, as a large proportion of fatal
events occur during the early acute phase, when
intensive monitoring and therapeutic decisions are
most influential.

Although machine learning has shown
promise, the current literature remains
inconclusive regarding which machine-learning
approach offers the most reliable and clinically
applicable performance. An analysis of 3,489
patients with acute ischemic stroke admitted to the
intensive care unit, who survived and remained
hospitalized beyond the first 48 hours, using data
from the Medical Information Mart for Intensive
Care IV (MIMIC-1V) database, demonstrated that
machine-learning—based models have substantial
capability in predicting the risk of in-hospital
mortality in this clinical setting.*® However, the
study was conducted from intensive care settings
and may not be directly applicable to earlier
phases of care.

Moreover, early risk stratification in the
emergency department, where initial clinical
decisions and triage occur, has been minimally
explored in prior machine learning studies.
Therefore, the present study aimed to develop and
evaluate a machine learning—based predictive
model for 48-hour mortality in patients with acute
hemorrhagic stroke using emergency department-
based clinical data.

METHODS

Research design

A cross-sectional study was performed
involving the development of a machine learning
model based on secondary data from patients
diagnosed with ICH. The study was conducted at
Dr. Zainoel Abidin Hospital, Banda Aceh,
Indonesia. The dataset included clinical,
laboratory, and neuroimaging variables obtained
from patients diagnosed with ICH between
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January 2022 and December 2024. A supervised
machine learning approach was implemented to
develop a predictive model for 48-hour mortality
in patients with acute intracerebral hemorrhage.
The dataset was preprocessed through data

cleaning, normalization, and exclusion of
incomplete records. Class imbalance was
addressed using the Synthetic Minority

Oversampling Technique (SMOTE) to enhance
model generalization across mortality categories.
Three algorithms—Random Forest, Decision
Tree, and Gaussian Naive Bayes—were trained
and validated using stratified 5-fold cross-
validation. Model performance was assessed
through multiple metrics, including accuracy,
precision, recall, F1-score, and the area under the
receiver operating characteristic curve (AUC).

Study subjects

A consecutive sampling method was
employed to include all eligible cases of ICH
recorded between January 2022 and December
2024. The inclusion criteria were: 1) adult patients
aged 18 years or older with a confirmed diagnosis
of ICH based on non-contrast head CT scans; 2)
patients with complete clinical documentation
encompassing medical history, laboratory
investigations, and neuroimaging findings; and 3)
patients who underwent stroke severity
assessment using the National Institutes of Health
Stroke Scale (NIHSS) at admission. The exclusion
criteria encompassed: 1) patients with a primary
diagnosis other than ICH; 2) patients presenting
with complex comorbid conditions that could
independently affect clinical outcomes; 3) patients
with incomplete or inconsistent medical records;
and 4) cases lost to follow-up during
hospitalization.

Sample size determination

The minimum required sample size was
estimated using the rule of thumb for machine
learning classification analysis. The formula
applied was n > 10 X k X ¢, where n denotes the
minimum sample size, k represents the number of
predictor variables, and c signifies the number of
outcome classes.®” In the present study, 12
independent variables were included,
encompassing four clinical, four laboratory, three
computed tomography (CT)-based variables, and
one additional variable, with three outcome
categories  representing different mortality
intervals. Applying the formula yielded a
minimum of 360 patient records, which was
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determined to be adequate to ensure model
stability and generalizability.

Data collection

Data were collected retrospectively from
hospital medical records. Each entry in the dataset
represented a single clinical episode of ICH. In
cases where a patient experienced multiple
admissions due to recurrent events, each
hospitalization was considered a separate case to
preserve data independence. Clinical data such as
age, stroke onset, blood pressure, Glasgow coma
scale (GCS), and National Institutes of Health
Stroke Scale (NIHSS) scores were obtained from
standardized  hospital  admission  forms.
Laboratory data, including leukocyte count and
random blood glucose levels, were retrieved from
hospital  laboratory  information  systems.
Neuroimaging data, including hemorrhage
location, hematoma volume, and midline shift,
were extracted from radiology reports verified by
radiologists. Additional parameters such as
surgical evacuation and pneumonia were derived
from the patients’ treatment and progress notes.
All data were reviewed and verified to ensure
accuracy and completeness before entry into the
analytical database. Missing values were managed
using median imputation for numerical variables
to reduce bias and preserve data variability.
Categorical data were encoded numerically to
enable computational analysis. Prior to modeling,
exploratory data analysis was conducted to assess
data distribution, identify outliers, and visualize
potential relationships among variables. The
complete dataset was then randomly divided into
training and testing subsets, maintaining
proportional representation of outcome classes.
The training subset (80%) was used for model
development and hyperparameter optimization,
while the training (or testing) subset (20%) served
for performance evaluation and external
validation.

Model development

Model development was performed using
Python software version 3.10 (Python Software
Foundation, Beaverton, Oregon, USA) on the
Google Collaboratory platform (Google LLC,
Mountain  View, California, USA). Data
preprocessing steps included standardization of
continuous variables and encoding of categorical
variables to ensure algorithm compatibility. Three
supervised machine learning algorithms were
applied: Random Forest, Decision Tree, and Naive
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Bayes classifier. The Random Forest algorithm
was utilized as an ensemble learning approach that
integrates multiple decision trees to minimize
overfitting and enhance predictive robustness. The
Decision Tree model was implemented for its
interpretability, as it allows visualization of
hierarchical decision paths and facilitates
understanding of variable interactions in clinical
settings. The Naive Bayes classifier, based on
probabilistic reasoning, was chosen for its
computational efficiency and suitability for small
to medium-sized datasets. Hyperparameter tuning
was conducted for each algorithm through grid
search optimization to identify the parameter
configurations that achieved the best predictive
performance. The target output for all models was
the 48-hour mortality classification, comprising
three categories as previously defined. Model
training involved fitting the algorithms to the
training data, learning from patterns and
interactions between input features and known
outcomes. Feature importance ranking was
derived primarily from the Random Forest model
to identify the most influential predictors of short-
term mortality. Class imbalance was addressed
using SMOTE to enhance model generalization
across  mortality  categories. The  three
algorithms—Random Forest, Decision Tree, and
Gaussian Naive Bayes—were trained and
validated using stratified 5-fold cross-validation.

Outcome measurements

The independent variables included
demographic, clinical, laboratory, and
neuroimaging parameters identified in prior
literature as relevant predictors of mortality in
hemorrhagic stroke. These parameters included
patient age, time from symptom onset to hospital
arrival, systolic blood pressure at admission,
Glasgow Coma Scale (GCS) score, NIHSS score,
leukocyte count, random blood glucose at
admission, hemorrhage location, hematoma
volume, presence of midline shift, surgical
evacuation, and occurrence of pneumonia
complications. The dependent variable was 48-
hour mortality, classified into three distinct
outcome categories: death within 24 hours after
onset, death within 24-48 hours after onset, and
survival beyond 48 hours.

Model evaluation

Our model evaluation used a comprehensive
set of performance metrics—sensitivity (recall),
specificity, positive predictive value (PPV or
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precision), negative predictive value (NPV), F1-
score, and ROC-AUC, the latter being an overall
measure of the model’s discriminatory ability.®)
These metrics were selected for their clinical
relevance: sensitivity is crucial for identifying at-
risk patients (minimizing false negatives), while
specificity helps reduce unnecessary
interventions. Accuracy measures the overall
proportion of correct classifications, while
precision assesses the proportion of correctly
identified positive cases among all positive
predictions. Recall, also referred to as sensitivity,
quantifies the proportion of actual positive cases
correctly identified by the model. The Fl1-score,
representing the harmonic mean of precision and
recall, was employed to balance predictive
capability, particularly in the presence of class
imbalance. The AUC provided a comprehensive
assessment of discriminative ability across
multiple probability thresholds and was
considered the most important indicator for
evaluating  clinical  applicability.®>  All
performance metrics were calculated using the
scikit-learn and NumPy Python libraries. The
algorithm demonstrating the highest AUC and F1-
score was selected as the optimal model due to its
superior combination of accuracy, robustness, and
generalizability. Cross-validation was performed
to confirm model stability, and receiver operating
characteristic (ROC) curves were constructed to
visually compare classification performance
among algorithms.

Ethical approval

The study protocol was reviewed and
approved by the Ethics Committee for Health
Research, Dr. Zainoel Abidin Hospital, Banda
Aceh, Indonesia (Approval number: 060/ETIK-
RSUDZA/2025), in accordance with the
principles of the Declaration of Helsinki. Written
informed consent was obtained from the patients
or their legal guardians prior to enrolment.

RESULTS

Characteristics of the included patients

A total of 746 patients diagnosed with acute
ICH were included in the analysis (Table 1). The
mean age was 57.28 £ 12.19 years. Male patients
constituted 57.1% of the cohort, whereas females
accounted for 42.9%. Upon hospital admission,
the mean GCS score was 11.23 + 3.49, while the
mean NIHSS score was 15.49 + 8.01, indicating a
wide spectrum of neurological deficits from mild
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to severe. The mean systolic blood pressure on
arrival was 189.20 + 30.33 mmHg. The mean
random blood glucose level was 141.78 + 50.06
mg/dL. The mean leukocyte count was 11,911.17
+ 3,921.74/uL. Radiological evaluation revealed
the presence of midline shift in 572 patients
(76.68%). Regarding clinical outcomes, 605
patients (81.1%) survived beyond 48 hours, 31
patients (4.2%) died within 2448 hours, and 49
patients (6.6%) died within the first 24 hours.
Clinical outcome data were incomplete for 61
patients (8.2%).

Table 1. General characteristics of the research
subjects (n=746)

Variable n (%)
Age (years) 5728 £12.19
Sex

Male 57.1

Female 42.9
GCS score 11.23 +£3.49
NIHSS score 15.49 £ 8.01
Systolic blood pressure (mmHg) 189.20 £ 30.33

Random blood glucose (mg/dL)

141.78 £ 50.06

Leukocyte count (/uL) 11,911.17 £ 3,921.74
Radiological findings
Midline shift 572 (76.7)
Clinical outcomes
Survived >48 h 605 (81.1)
Died 2448 h 31 (4.2)
Died <24 h 49 (6.6)
Unknown 61 (8.2)

Note: Data presented as mean + SD, except sex, radiological
findings and clinical outcomes: n (%). GCS: Glasgow coma
scale; NIHSS: National Institutes of Health stroke scale

Data preprocessing

The dataset comprised demographic, clinical,
laboratory, radiological, and outcome variables
from 746 patients with acute ICH. The primary
outcome variable categorized mortality into three
groups: survival beyond 48 hours, death within
24-48 hours, and death within 24 hours.
Preprocessing began with exploratory data
analysis, which included evaluation of variable
distribution, data types, outlier detection, and
assessment of missing values. Missing data were
identified across several variables, with the
highest proportion being observed in GCS
(7.91%) and systolic blood pressure (7.77%). The
proportion of missing values was below 10% for
all variables, indicating that deletion of
incomplete cases would not substantially bias the
analysis. Consequently, records containing
missing data were excluded to preserve dataset
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integrity and analytical consistency. Subsequent
data cleaning included verification of variable
consistency, correction of data entry errors, and
alignment of variable formats according to the
operational definitions. Several ordinal variables
initially stored as numeric values were recoded to
reflect  categorical  classifications.  After
preprocessing, 657 complete cases were retained
for model development. The cleaned dataset
accurately represented the clinical spectrum of
patients and ensured valid input for the modeling
phase.

The distribution of clinical outcomes after the
cleaning process showed 588 patients who
survived >48 hours (89.5%), 28 patients who died
within 24-48 hours (4.3%), and 41 patients who
died within <24 hours (6.2%). The number of
deaths was substantially lower than the number of
survivors, creating a class imbalance. This
condition poses a risk of prediction bias, in which
the model becomes more likely to classify patients
as survivors, reflecting the majority class. To
address this issue, the Synthetic Minority
Oversampling Technique (SMOTE) was applied
to generate new synthetic samples in the minority
classes. This approach enables the model to be
trained on a more balanced distribution, thereby
improving its ability to detect patients at high risk
of mortality. The data distribution following the
application of the SMOTE technique shows a
balanced composition, with each class represented
by 588 patients.

The feature importance analysis of the
Random Forest model after applying SMOTE to
the full dataset provides an overview of the
relative contribution of each variable in predicting
clinical outcomes (Figure 1). The GCS score
emerged as the most dominant predictor,
contributing 19.92%, indicating that the patient’s
level of consciousness is the most influential
factor in determining the outcome. Leukocyte
count ranked second with a contribution of
11.47%, followed by the NIHSS score at 10.54%
and blood glucose level at 9.28%, demonstrating
that neurological and inflammatory parameters
play key roles in model prediction. Blood pressure
showed a moderate contribution (8.82%), whereas
age, evacuation, midline shift, hemorrhage
location, and hematoma volume had relatively
lower influences, with values ranging from 5—-8%.
Onset and pneumonia exhibited the smallest
contributions, at 3.78% and 2.81% respectively,
indicating that these variables were less significant
in the model compared with the others.
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Random Forest — Feature Importance (AFTER SMOTE, FULL DATA)

2.81%

Pneumonia_kat

Onset_kat

Volume_kat

Lokasi_kat

7.05%

Midline_kat

Evakuasi_kat 7.31%

Feature

Umur_kat

TekananDarah_kat 8.82%

Glukosa_kat

NIHSS_kat

Leukosit_kat

GCS_kat

19.92%|

0.000 0.025 0.050 0.075

0.100 0.125 0.150 0.175 0.200
Importance

Figure 1. Feature importance plot of the Random Forest model after applying SMOTE to the entire dataset. The
GCS score is the strongest predictor of clinical outcomes (19.92%), followed by leukocyte count (11.47%),
NIHSS score (10.54%), and blood glucose level (9.28%). Other variables, including blood pressure, age,
hemorrhage location, midline shift, hematoma volume, onset, and pneumonia, show smaller contributions,
indicating a relatively lower influence on the model’s predictions.

Model evaluation

Random Forest achieved the highest
accuracy at 84.77%, precision of 84.57%, recall of
84.77%, F1-score of 84.63%, and AUC of 80.51%
(Table 2). The balanced precision and recall
values indicate consistent performance across
survival and mortality classes. Decision Tree
reached an accuracy of 80.98% and precision of
85.24%, with a lower AUC of 61.12%, suggesting
limited  discrimination  despite  adequate
classification capacity. Gaussian Naive Bayes
recorded the lowest accuracy at 68.35%, but

attained the highest precision (89.83%) and an
AUC of 82.94%, reflecting acceptable
discrimination but weaker sensitivity for mortality
detection. Overall, Random Forest emerged as the
most optimal algorithm, showing the best trade-
off between accuracy, sensitivity, and F1-score,
consistent with its ensemble architecture that
mitigates the limitations of single-tree models.
Decision  Tree  remained  valuable for
interpretability, while Naive Bayes provided a
computationally efficient yet less balanced
alternative.

Table 2. Comparative performance of three machine learning models—Random Forest, Decision Tree,
and Naive Bayes (Gaussian)—based on key evaluation metrics, including accuracy, precision, recall,
F1-score, and area under the curve

Accuracy

Model (%) Precision (%)  Recall (%) Fl-score (%) AUC (%)
(4
Random Forest 84.77 84.57 84.77 84.63 80.51
Decision Tree 80.98 85.24 80.98 82.90 61.12
Naive Bayes (Gaussian) 68.35 89.83 68.35 75.18 82.94

Note : AUC : area under curve
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Table 3. Comparative performance of Random Forest, Decision Tree, and Naive Bayes models in
predicting 48-hour mortality in acute intracerebral hemorrhagic stroke, evaluated using class-specific
sensitivity, specificity, positive predictive value, and negative predictive value across <24-hour, 24—
48-hour, and >48-hour outcome categories

Model Class Sensitivity (%) Specificity (%) PPV (%) NPV (%)
Random Forest <24 hours 14.6 94.2 14.3 94.3
24-48 hours 3.6 96.5 4.3 95.7
>48 hours 93.5 39.1 92.9 41.5
Decision Tree <24 hours 293 91.1 17.9 95.1
24-48 hours 3.6 94.6 2.9 95.7
>48 hours 88.4 49.3 93.7 333
Naive Bayes <24 hours 85.4 71.3 16.5 98.7
24-48 hours 3.6 96.2 4.0 95.7
>48 hours 70.7 94.2 99.0 27.4

Note : PPV : positive predictive value; NPV : negative predictive value

Random Forest demonstrated the strongest
performance for predicting survival beyond 48
hours, with high sensitivity (93.5%) and PPV
(92.9%), indicating robust identification of
patients unlikely to experience early mortality,
although specificity remained limited (39.1%)
(Table 3). Decision Tree showed a similar pattern
for the >48-hour category, achieving high
sensitivity (88.4%) and PPV (93.7%), but with
moderate specificity (49.3%). Naive Bayes
yielded the highest PPV for >48 hours (99.0%)
with high specificity (94.2%), suggesting highly
reliable positive classification, albeit with lower
sensitivity (70.7%). For the <24-hour category,
Naive Bayes outperformed the other models in
sensitivity (85.4%) and NPV (98.7%), reflecting
superior detection of very early mortality, whereas
Random Forest and Decision Tree exhibited
limited sensitivity despite high specificity. Across
all models, prediction of the intermediate 24—48-
hour category was consistently poor, with
sensitivity remaining very low (3.6%) despite high
specificity (>94%) and NPV (>95%), indicating
persistent difficulty in discriminating this time
window.

The Random Forest model achieved superior
class balance, accurately identifying patients with
acute mortality within 24 hours (93.2%) and
maintaining stable detection performance across
other outcome categories (Figure 2). Although
misclassification occurred in some patients
surviving beyond 48 hours, the model had more
consistent prediction stability compared with
Decision Tree and Naive Bayes. Decision Tree
achieved good accuracy for early mortality (<24
hours) but struggled to distinguish patients who
died within 24—48 hours from survivors. Gaussian
Naive Bayes demonstrated a strong bias toward
the survival class, correctly predicting most

survivors but misclassifying the majority of
mortality cases, reflecting the limitation of the
independence  assumption among clinical
variables. In summary, Random Forest provided
the most reliable and clinically applicable
performance for early mortality prediction in
patients with acute intracerebral hemorrhage. The
model demonstrated stable accuracy, balanced
sensitivity and  specificity, and  robust
discriminatory power across multiple evaluation
metrics.

Table 4 presents the evaluation results of the
primary model using 12 features and the
comparison model using 11 features after the
hemorrhage evacuation variable was removed. In
the primary model, the Random Forest algorithm
demonstrated the strongest performance, with an
accuracy of 84.77%, precision of 84.57%, recall of
84.77%, Fl-score of 84.63%, and AUC of
80.51%. The balanced combination of high
accuracy and Fl-score indicates that Random
Forest maintained consistent predictive ability for
both survival and mortality classes. After the
hemorrhage evacuation feature was excluded, the
model performance decreased only slightly, with
an accuracy of 84.30%, F1-score of 84.20%, and
AUC of 80.30%. This minimal change suggests
that the hemorrhage evacuation variable did not
exert a significant influence on model
performance, allowing the model to remain stable
even when the feature was removed.

For the Decision Tree algorithm, the primary
model with 12 features produced an accuracy of
80.98%, precision of 85.24%, recall of 80.98%,
Fl1-score of 82.90%, and AUC of 61.12%. After
the hemorrhage evacuation feature was excluded,
the model performance remained relatively stable,
with a slight improvement in AUC to 63.50%,
while accuracy and F1-score remained within the
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range of 80.50-83.60%. These findings indicate

that

the hemorrhage evacuation feature did not

contribute meaningfully to the discriminative

Confusion Matrix (Count) — RandomForest — SMOTE rl.0, K=5

Confusion Matrix (Count) — NaiveBayes — SMOTE rl.0, K=5
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Figure 2. A heatmap-based confusion matrix derived from four machine-learning algorithms (Random Forest,
Decision Tree, and Gaussian Naive Bayes) illustrates the distribution of predicted outcomes for patients with
acute intracerebral hemorrhage compared with the actual clinical status. Darker shading indicates a higher
proportion of correct classifications, with the Random Forest model demonstrating the most consistent
performance, particularly in the group of patients who survived beyond 48 hours
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Table 4. Performance metrics of machine-learning algorithms using 12 features vs. 11 features

Algorithm Metric Model with 12 Features (%) Model with 11 Features (%)
Random Forest Accuracy 84.77 84.30
Precision 84.57 84.10
Recall 84.77 84.30
F1-score 84.63 84.20
AUC 80.51 80.30
Decision Tree Accuracy 80.98 82.20
Precision 85.24 85.20
Recall 80.98 82.20
F1-score 82.90 83.60
AUC 61.12 63.00
Naive Bayes Accuracy 68.35 69.60
Precision 89.83 89.70
Recall 68.35 69.60
F1-score 75.18 76.20
AUC 82.94 83.10
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Figure 3. Receiver operating characteristic (ROC) curves from the evaluation of three machine-learning
algorithms—Random Forest, Naive Bayes, and Decision Tree—in predicting mortality among patients with
acute intracerebral hemorrhagic stroke

In contrast, the Gaussian Naive Bayes
algorithm exhibited more variable performance. In
the primary model, the accuracy was 68.35%,
precision 89.83%, recall 68.35%, Fl-score
75.18%, and AUC 82.94%. After the hemorrhage

evacuation feature was removed, the model
demonstrated consistent improvement, with an
accuracy of 69.60%, Fl-score of 76.20%, and
AUC of 83.10%. This improvement suggests that
in probabilistic models such as Naive Bayes,
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removing features that are not fully independent of
other variables can enhance prediction stability by
reducing irrelevant redundancy or potential bias.

Figure 3 illustrates that the ROC curve for
the Random Forest algorithm demonstrates
excellent classification performance across all
time-to-death categories. The model achieved an
AUC of 0.858 for <24 hours, 0.699 for 24-48
hours, and 0.865 for >48 hours, with a micro-AUC
01 0.956 and a macro-AUC of 0.808. These values
indicate strong discriminative ability in
distinguishing high-risk patients from those who
survive, particularly in the <24-hour and >48-hour
periods. The curve approaching the upper-left
corner of the plot reflects optimal sensitivity and
specificity, positioning Random Forest as the most
stable and accurate algorithm among the three.

The ROC curve for the Decision Tree
algorithm shows relatively lower classification
performance compared with the other two
algorithms. The AUC values were 0.598 for <24
hours, 0.481 for 24-48 hours, and 0.683 for >48
hours, with a micro-AUC of 0.866 and a macro-
AUC of 0.588. The distance of the curve from the
ideal diagonal indicates limited discriminative
ability, especially in predicting mortality in the
24-48-hour interval. These findings highlight the
tendency of Decision Tree models to overfit the
training data, resulting in reduced performance
when applied to the test set.

The ROC curve for the Naive Bayes
algorithm demonstrates good performance,
although slightly below that of Random Forest.
The model achieved AUC values of 0.875 for <24
hours, 0.688 for 2448 hours, and 0.883 for >48
hours, with a micro-AUC of 0.894 and a macro-
AUC of 0.817. These findings indicate that Naive
Bayes provided consistent predictions for the <24-
hour and >48-hour periods, with a noticeable drop
in performance for the 24-48-hour category.
Nevertheless, the curve's proximity to the ideal
area suggests that the model maintains favorable
sensitivity and accuracy in identifying patients at
high risk of mortality.

DISCUSSION

In the present study, three machine learning
algorithms—Random Forest, Decision Tree, and
Gaussian Naive Bayes—were compared to
develop a predictive model for 48-hour mortality
in patients with acute intracerebral hemorrhage.
Other algorithms such as support vector machine
(SVM), logistic regression, extreme gradient
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boosting (XGBoost), artificial neural network
(ANN), and K-nearest neighbor (KNN) were not
included at this stage of model development. The
stratified ~ 5-fold  cross-validation  results
demonstrated that Random Forest achieved the
best overall performance, with an accuracy of
84.77%, Fl-score of 84.63%, and AUC of
80.51%. The superiority of the Random Forest
model can be attributed to its ensemble
architecture, which aggregates multiple decision
trees to capture complex non-linear interactions
among clinical variables, thereby enhancing both
stability and generalizability.®® This finding is
consistent with previous studies reporting that
Random Forest provides higher predictive
reliability than single-tree models in clinical
outcome prediction.?¢27

The Decision Tree model, while conceptually
simple and highly interpretable, showed limited
predictive power with an AUC of only 61.12%. A
high rate of misclassification was observed,
particularly in cases where survivors were
incorrectly predicted as non-survivors. This
outcome highlights the inherent limitation of
single-tree models, which often fail to capture the
heterogeneity and complex interdependence
among clinical predictors in medical datasets.
Despite these limitations, the Decision Tree
algorithm remains valuable for exploratory
analysis and identifying key mortality-related
predictors due to its transparent rule-based
structure. Furthermore, the Gaussian Naive Bayes
model displayed a strong bias toward the survival
category, demonstrating high precision but low
recall for mortality detection. This pattern aligns
with the model’s underlying assumption of
predictor independence, which is rarely met in
multifactorial clinical data. Nonetheless, the
relatively high AUC of 82.94% suggests that this
algorithm retains a satisfactory discriminatory
capacity and may serve as a complementary model
when computational simplicity is prioritized.

Confusion matrix visualization confirmed
these findings. The Random Forest model
achieved the highest accuracy in identifying
patients who died within 24 hours (93.2%),
followed by Decision Tree, which produced
similar but less consistent results due to frequent
misclassification between the 24-48-hour and
>48-hour survival categories. In contrast, the
Naive Bayes model tended to predict most cases
as long-term survivors (>48 hours), resulting in
diminished sensitivity for acute mortality
detection.
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The present findings align closely with
previous studies demonstrating the robustness of
Random Forest in stroke mortality prediction.
Abujaber et al.!” reported a higher accuracy
(0.954) using a multiethnic registry dataset, which
may be explained by a larger and more diverse
sample compared with the single-center dataset
used in the present study. Nonetheless, the
consistent advantage of Random Forest across
studies underscores its reliability as a predictive
framework. Similarly, Peng et al.?” found that
Random Forest outperformed artificial neural
networks (ANN), support vector machines
(SVM), and logistic regression in predicting 30-
day mortality among patients with spontaneous
ICH, with an AUC of 0.87, corroborating the
present findings.

Differences between studies are likely
influenced by sample size, feature selection, and
model parameterization. In contrast, the present
study demonstrated that Random Forest was
superior to Decision Tree in detecting 48-hour
mortality, a clinically significant endpoint often
overlooked in previous studies. Fernandez-
Lozano et al.?® further support the robustness of
Random Forest, showing strong predictive power
for both short- and medium-term outcomes (AUC
range: 0.79-0.95).

When the performance of the present study’s
model is compared to previously published
research, it becomes evident that the locally
developed Random Forest model achieved
favorable results (AUC 0.805; Fl-score 0.846)
despite focusing on a narrower, early mortality
endpoint (within 48 hours). Although the AUC
value was slightly lower than that reported in
studies with larger multicenter datasets, the
consistent stability of Random Forest in early
mortality prediction highlights its applicability to
local clinical data.®® The results also indicate that
model performance depends strongly on the type
of clinical outcome, the algorithm used, and
dataset characteristics. Logistic  regression
demonstrated high accuracy in long-term
mortality prediction, whereas Decision Tree
performed best in in-hospital mortality
prediction.?”?® Conversely, the present study
confirmed that Random Forest remained robust
for short-term mortality prediction, reflecting its
capacity to handle nonlinear relationships and
class imbalance.

The findings of the present study differ from
a similar previous study that identified other
machine learning approaches, particularly

Machine learning 48-hour mortality intracerebral

gradient boosting or regression-based models, as
the optimal predictors of stroke-related mortality.
While the study of Cummins et al.,*® conducted
in intensive care unit settings, reported superior
performance of models such as XGBoost or
logistic regression; the present study demonstrated
that Random Forest achieved the most reliable
performance for predicting 48-hour mortality in
acute intracerebral hemorrhage using emergency
department data. This discrepancy may reflect
differences in clinical context, stroke subtype, data
availability, and outcome timeframe. Specifically,
early mortality prediction in hemorrhagic stroke
relies on rapidly obtainable and often
heterogeneous variables, a setting in which
ensemble bagging methods such as Random
Forest may be more robust than boosting or
parametric models. These contrasting results
underscore that the optimal machine learning
approach for stroke mortality prediction is highly
context-dependent rather than universal.

In the present study, Decision Tree yielded
the lowest performance among all models, being
characterized by reduced AUC and Fl1-score
values. This limitation can be explained by the
model’s tendency toward overfitting, where
decision boundaries are excessively tailored to the
training data, reducing its generalizability to new
datasets.®®* This effect is exacerbated in
complex clinical data, such as hemorrhagic stroke,
where predictor interactions are often nonlinear
and interdependent. Furthermore, Decision Tree
models are sensitive to noise and class imbalance,
both of which are common in medical datasets.*”
In contrast, ensemble methods such as Random
Forest mitigate these issues by combining multiple
trees, thus reducing variance and improving model
stability.?

From a clinical perspective, the present study
contributes novel evidence supporting the role of
machine learning, especially Random Forest, as an
effective tool for early outcome prediction in
hemorrhagic stroke. The focus on the early phase
(within 48 hours) represents a unique aspect rarely
explored in previous research, offering valuable
insight for acute decision-making.
Implementation of such predictive models in
emergency and critical care settings could assist
physicians in promptly identifying high-risk
patients using basic clinical and radiological
parameters—such as GCS, NIHSS, systolic blood
pressure, random blood glucose, and CT
findings—available upon admission. This would
allow prioritization of high-risk individuals for
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intensive monitoring or surgical intervention,
potentially  improving survival  outcomes.
Furthermore, although Random Forest provided
the most balanced performance, simpler models
such as logistic regression may remain useful in
ischemic stroke or settings with limited
computational resources. These models are more
interpretable and transparent, aligning with the
practical needs of clinicians in low-resource
environments.

Several limitations should be acknowledged
when interpreting these findings.  First,
biochemical variables and comorbid conditions
were not comprehensively analyzed. Factors such
as lipid profiles, renal function, coagulation
parameters, and chronic disease history (including
diabetes mellitus, cardiovascular disease, and
chronic kidney disease) are known to influence
both the severity of intracerebral hemorrhage and
recovery trajectories. Exclusion of these variables
may have reduced the model’s ability to capture
certain mortality determinants. Second, the
generalizability of the models is limited by the
single-center design. As a tertiary referral hospital,
Dr. Zainoel Abidin Hospital, Banda Aceh,
primarily manages patients with more severe
presentations, which may not represent the full
clinical spectrum encountered in smaller
healthcare facilities or primary care centers.
Consequently, the predictive performance of the
models may differ in other settings with distinct
population characteristics, healthcare resources, or
clinical management protocols. Future research
should aim to wvalidate the models using
multicenter or national datasets encompassing
diverse populations and broader clinical variables.
Expanding data sources would not only enhance
external validity but also facilitate development of
hybrid models capable of predicting both
mortality and functional outcomes, ultimately
improving the clinical utility of machine learning
applications in stroke care.

CONCLUSIONS

Machine learning, particularly the Random
Forest algorithm, demonstrated strong capability
in predicting 48-hour mortality among patients
with acute ICH. Using readily available clinical
and radiological variables, the model achieved
high accuracy and robust discrimination,
confirming the suitability of ensemble methods for
complex clinical data. The focus on 48-hour
mortality prediction provides valuable potential
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for rapid risk stratification and clinical decision
support in acute stroke care. Broader validation
across multicenter datasets and inclusion of
additional variables such as biochemical markers
and comorbidities are recommended to enhance
model generalizability and clinical applicability.
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