Detection of immunogenic protein from salivary gland of Aedes albopictus

Main Article Content

Rike Oktarianti
Rochmatul Nuryu Khasanah
Syubbanul Wathon
Kartika Senjarini


Dengue virus is transmitted by several species of Aedes mosquitoes, with Aedes albopictus as secondary vector. During blood feeding, these vectors inject saliva into the vertebrate hosts. The saliva contains anticoagulant, anti-inflammatory and immunogenic factors. The objective of this research was to detect immunogenic proteins from Ae.albopictus salivary glands reacting with sera of people living in dengue endemic areas.

The identification of immunogenic proteins of Ae. albopictus salivary gland used one-dimensional gel electrophoresis (sodium dodecyl sulfate polyacrylamide gel electrophoresis), and western blot analysis, respectively. To determine the immunogenic nature of the candidate proteins, the antigens from the salivary gland of Ae. albopictus were reacted with sera from healthy persons, dengue hemorrhagic fever (DHF) patients, and neonates, each of the groups comprising 10 samples.

The protein profiles of Ae. albopictus salivary glands showed 13 bands with molecular weights from 16 kDa up to 97 kDa, i.e. 16, 17, 26, 28, 31, 32, 45, 55, 60, 67, 73, 76, and 97 kDa. According to western blot analysis result, the 31 kDa proteins were recognized in all endemic population sera, both in DHF patients and healthy persons. In contrast, protein bands of 47 and 67 kDa were only recognized by the sera of DHF patients.

Three immunogenic proteins of 31, 47 and 67 kDa were detected from Ae. albopictus salivary glands. These immunogenic proteins may be developed as candidate biomarkers for bite exposure to Ae. albopictus and as vector-based DHF vaccines.

Article Details

How to Cite
Oktarianti, R., Khasanah, R. N. ., Wathon, S. ., & Senjarini, K. . (2021). Detection of immunogenic protein from salivary gland of Aedes albopictus. Universa Medicina, 40(3), 234–242.
Original Articles


Hadinegoro SRS. The revised WHO dengue case classification: Does the system need to be modified? Paediatr Int Child Health 2012;32:33–8. doi: 10.1179/2046904712Z.00000000052.

Sandra T, Sofro MA, Suhartono S, Martini M, Hadisaputro S. Faktor yang berpengaruh terhadap kejadian demam berdarah dengue pada anak usia 6-12 tahun. J Ilm Permas J Ilm STIKES Kendal 2019;9:28–35.

Zhang H, Lui R. Releasing Wolbachia-infected Aedes aegypti to prevent the spread of dengue virus: a mathematical study. Infect Dis Model 2020;5:142–60. 12.004.

Koh C, Allen SL, Herbert RI, Mcgraw EA. The transcriptional response of Aedes aegypti with variable extrinsic incubation periods for dengue virus. Genome Biol Evol 2018;10:3141–51.

Ahammad F, Tengku Abd Rashid TR, Mohamed M, Tanbin S, Fuad FAA. Contemporary strategies and current trends in designing antiviral drugs against dengue fever via targeting host-based approaches. Microorganisms 2019;7:296.

Sun B, Zhang X, Zhang H, et al. Genomic epidemiological characteristics of dengue fever in Guangdong province, China from 2013 to 2017. PLoS Negl Trop Dis 2020;14: e0008049.

Liu Y, Zhang F, Liu J, et al. Transmission-blocking antibodies against mosquito C-type lectins for dengue prevention. PLoS Pathog 2014;10: e1003931. 1003931.

Londono-Renteria B, Troupin A, Conway MJ, et al. Dengue virus infection of Aedes aegypti requires a putative cysteine rich venom protein. PLoS Pathog 2015;11: e1005202.

Wan SW, Lin CF, Wang S, et al. Current progress in dengue vaccines. J Biomed Sci 2013;20:37.

Rahayu DF, Ustiawan A. Identifikasi Aedes aegypti dan Aedes albopictus. Balaba J Litbang Pengendali Penyakit Bersumber Binatang Banjarnegara 2013;9:7–10.

Sun P, Nie K, Zhu Y, et al. A mosquito salivary protein promotes flavivirus transmission by activation of autophagy. Nat Commun 2020;11: 260.

Guerrero D, Cantaert T, Missé D. Aedes mosquito salivary components and their effect on the immune response to Arboviruses. Front Cell Infect Microbiol 2020;10:1–11.

Fontaine A, Diouf I, Bakkali N, et al. Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasites Vectors 2011;44: 187.

Martin-Martin I, Smith LB, Chagas AC, et al. Aedes albopictus D7 salivary protein prevents host hemostasis and inflammation. Biomolecules 2020;10:1–17. doi: 10.3390/biom10101372.

Manning JE, Morens DM, Kamhawi S, Valenzuela JG, Memoli M. Mosquito saliva: the hope for a universal arbovirus vaccine? J Infect Dis 2018; 218:7-15. doi: 10.1093/infdis/jiy179.

Doucoure S, Cornelie S, Patramool S, et al. First screening of Aedes albopictus immunogenic salivary proteins. Insect Mol Biol 2013;22:411–23. .

Oktarianti R, Senjarini K, Hayano T, Fatchiyah F, Aulanni’am. Proteomic analysis of immunogenic proteins from salivary glands of Aedes aegypti. J Infect Public Health 2015;8:575–82.

Schmid MA, Kauffman E, Payne A, Harris E, Kramer LD. Preparation of mosquito salivary gland extract and intradermal inoculation of mice. Bio Protoc 2017;7:e2407. doi: 10.21769/BioProtoc.2407.

Liu Y, Zhang F, Liu J, et al. Western Blot comparison of wet transfer and semi-dry transfer methods. Parasites Vectors 2011;10:54–64.

Oktarianti R, Wathon S, Indrasari IF, Fitriani NR, Senjarini K. Platelet aggregation in vitro analysis of 67 kDa immunogenic fraction from Aedes albopictus salivary gland. Bioedukasi 2020;18:47–52.

Wasinpiyamongkol L, Patramool S, Thongrungkiat S, et al. Protein expression in the salivary glands of dengue-infected Aedes aegypti mosquitoes and blood-feeding success. Southeast Asian J Trop Med Public Health 2012; 43:1346-57.

De Carvalho IL, Rocha DK, Almeida APG. Immune reactivity to dengue and Aedes albopictus mosquitoes in the population from Macao, China, before dengue occurrence. In Vivo (Brooklyn) 2011;25:625–31.

Calvo E, Mizurini DM, Sá-Nunes A, et al. Alboserpin, a factor Xa inhibitor from the mosquito vector of yellow fever, binds heparin and membrane phospholipids and exhibits antithrombotic activity. J Biol Chem 2011;286: 27998–8010. doi: 10.1074/jbc.M111.247924.

Luplertlop N. Aedes mosquito salivary immune peptides: boost or block dengue viral infections. J Coast Life Med 2014;2:163–8. doi:10.12980/JCLM.2.2014C1219.

Masoud HMM, Helmy MS, Darwish DA, Abdel-Monsef MM, Ibrahim M.A. Apyrase with anti-platelet aggregation activity from the nymph of the camel tick Hyalomma dromedarii. Exp Appl Acarol 2020;80:349–61. doi: 10.1007/s10493-020-00471-9.

Juhn J, Naeem-Ullah U, MacIel Guedes BA, et al. Spatial mapping of gene expression in the salivary glands of the dengue vector mosquito, Aedes aegypti. Parasites Vectors 2011;4:1–13.

Peng Z, Caihe L, Beckett AN, Guan Q, James AA, Simons FER. rAed a 4: a new 67-kDa Aedes aegypti mosquito salivary allergen for the diagnosis of mosquito allergy. Int Arch Allergy Immunol 2016;170:206–10. DOI:

Wichit S, Ferraris P, Choumet V, Missé D. The effects of mosquito saliva on dengue virus infectivity in humans. Curr Opin Virol 2016;21:139–45. doi: 10.1016/j.coviro.2016.10.001.

Dong F, Fu Y, Li X, Jiang J, Sun J, Cheng X. Cloning, expression, and characterization of salivary apyrase from Aedes albopictus. Parasitol Res 2012;110:931–7. doi: 10.1007/s00436-011-2579-x.

Meekins DA, Kanost MR, Michel K. Serpins in arthropod biology. Semin Cell Dev Biol 2017; 62:105–19. doi: 10.1016/j.semcdb.2016.09.001.

Doucoure S, Mouchet F, Cornelie S, et al. Evaluation of the human IgG antibody response to Aedes albopictus saliva as a new specific biomarker of exposure to vector bites. PLoS Negl Trop Dis 2012;6:e1487. doi:10.1371/journal.pntd. 0001487.

Bratawijaya K, Rengganis I. Basic immunology. 11th ed. Jakarta: Publishing Agency of the Faculty of Medicine, University of Indonesia; 2014.

Oktarianti R, Senjarini K, Fatchiyah F, Aulanni’am. Immunogenic protein from salivary gland of Aedes aegypti against to human sera. Adv Nat Appl Sci 2014;8:101–7.