Pre-operative intraocular pressure as a predictor of post-operative intraocular pressure after phacoemulsification in non-glaucomatous patients

Main Article Content

Titiek Ernawati
Kevin Anggakusuma Hendrawan
Wilson Christianto Khudrati
Kevin Samsudin

Abstract

Background
Cataract has been known to cause high intraocular pressure which may lead to secondary glaucoma. Some anatomical changes in cataract patients are assumed to be factors contributing to increased intraocular pressure (IOP). The changes in IOP after cataract surgery tend to help surgeons to predict clinical outcomes. Therefore, IOP control is very important in these patients. This study aimed to determine the ocular biometric parameters and pressure-to-depth (PD) ratio associated with IOP in non-glaucomatous patients who undergo cataract surgery.


Methods
A prospective study using secondary clinical data collected from 81 non-glaucomatous patients. Data were collected by examining each subject pre- and post-operatively. The changes in ocular biometry parameters and IOP were measured one week before surgery and 8 weeks after the surgery. Univariate and multivariate linear regression were performed to analyze the data.


Results
The mean anterior chamber depth (ACD) change was 0.73 ± 0.16 mm, mean PD ratio was 5.04 ± 1.16, and the mean pre-operative IOP was 16.07 ± 2.92 mmHg, decreasing by 2.35 mm Hg (14.6 %) to 13.72 ± 3.42 mm Hg at 8 weeks postoperatively. Univariate linear regression results showed a significant correlation between PD ratio and post-operative IOP (p=0.000), but no significant association was observed between PD ratio and post-operative IOP in multiple linear regression (p=0.126). However, pre-operative IOP was significantly associated with post-operative IOP (Beta=1.244; p=0.004)


Conclusions
Our data demonstrated that pre-operative IOP was the most influential risk factor of IOP reduction after phacoemulsification in non-glaucomatous patients.

Article Details

How to Cite
Ernawati, T., Hendrawan, K. A. ., Khudrati, W. C., & Samsudin, K. . (2022). Pre-operative intraocular pressure as a predictor of post-operative intraocular pressure after phacoemulsification in non-glaucomatous patients. Universa Medicina, 41(1), 11–17. https://doi.org/10.18051/UnivMed.2022.v41.11-17
Section
Original Articles
Author Biography

Titiek Ernawati, Ophthalmology Department, Faculty of Medicine, Widya Mandala Catholic University Surabaya, Indonesia

Ophthalmology Department Primasataya Husada Citra Hospital Surabaya

References

Direktorat Pencegahan dan Pengendalian Penyakit Tidak Menular Direktorat Jenderal Pencegahan dan Pengendalian Penyakit. Peta jalan penanggulangan gangguan penglihatan di Indonesia tahun 2017-2030. Jakarta: Direktorat Pencegahan dan Pengendalian Penyakit Tidak Menular Direktorat Jenderal Pencegahan dan Pengendalian Penyakit; 2018.

World Health Organization. World report on vision. Geneva: World Health Organization;2019.

Shahzad HSF. Biometry for intra-ocular lens (IOL) power calculation. American Academy of Ophthalmology;2021.

Sheard R. Optimising biometry for best outcomes in cataract surgery. Eye (Lond) 2014;28:118–25. doi: 10.1038/eye.2013.248.

Picoto M, Galveia J, Almeida A, et al. Intraocular pressure (IOP) after cataract extraction surgery. Rev Bras Oftalmol 2014;73:230–6. doi:10.5935/0034-7280.20140050.

Melancia D, Pinto LA, Marques-Neves C. Cataract surgery and intraocular pressure. Ophthalmic Res 2015;53:141–8. doi: 10.1159/000377635.

Ramezani F, Mohammad Nazarian M, Rezae L. Intraocular pressure changes after phacoemulsification in pseudoexfoliation versus healthy eyes. BMC Ophthalmology 2021; 21:198. https://doi.org/10.1186/s12886-021-01970-y.

Hsu CH, Kakigi CL, Lin SC, Wang YH, Porco T, Lin SC. Lens position parameters as predictors of intraocular pressure reduction after cataract surgery in nonglaucomatous patients with open angles. Investig Ophthalmol Vis Sci 2015;56: 7807–13. doi: 10.1167/iovs.15-17926.

Markic B, Mavija M, Smoljanovic-Skocic S, Popovic MT, Burgic SS. Predictors of intraocular pressure change after cataract surgery in patients with pseudoexfoliation glaucoma and in nonglaucomatous patients. Vojnosanitetski pregled 2021: 81. doi: 10.2298/VSP200421081M.

Ramakrishnan R, Shrivastava S, Narayanam S, Dudhat B, Bhalla N. Effects of cataract surgery on ocular hypertension. Kerala J Ophthalmol 2018;28:186–8. doi: 10.4103/kjo.kjo_15_17.

Dhamankar R, Chandok N, Haldipurkar SS, Haldipurkar T, Shetty V, Setia MS. Factor affecting changes in the intraocular pressure after phacoemulsification surgery. Int Eye Sci 2018;18: 2125-31. doi:10.3980/j.issn.1672-5123.2018.12.02.

Ramli N, Chan LY, Nongpiur M, Samsudin A, He M. Anatomic predictors of intraocular pressure change after phacoemulsification: an AS-OCT study. Malaysian J Ophthalmol 2019;10–22. doi: 10.35119/myjo.v1i1.26.

Huang G, Gonzalez E, Lee R, Chen YC, He M, Lin SC. Association of biometric factors with anterior chamber angle widening and intraocular pressure reduction after uneventful phacoemulsification for cataract. J Cataract Refract Surg 2012;38:108–16. doi: 10.1016/j.jcrs.2011.06.037.

Huang G, Gonzalez E, Peng PH, et al. Anterior chamber depth, iridocorneal angle width, and intraocular pressure changes after phacoemulsification: Narrow vs open iridocorneal angles. Arch Ophthalmol 2011;129:1283–90. doi: 10.1001/archophthalmol.2011.272.

Cetinkaya S, Dadaci Z, Yener H, Acir NO, Cetinkaya YF, Saglam F. The effect of phacoemulsification surgery on intraocular pressure and anterior segment anatomy of the patients with cataract and ocular hypertension. Indian J Ophthalmol 2015;63:743–5. doi: 10.4103/0301-4738.171020.

Alaghband P, Beltran-Agulló L, Galvis EA, Overby DR, Lim KS. Effect of phacoemulsification on facility of outflow. Br J Ophthalmol 2018;102: 1520–6. doi: 10.1136/bjophthalmol-2017-311548.

Baek SU, Kwon S, Park IW, Suh W. Effect of phacoemulsification on intraocular pressure in healthy subjects and glaucoma patients. J Korean Med Sci 2019;34:1–11. doi: 10.3346/jkms.2019. 34.e47.

Beato JN, Reis D, Esteves-Leandro J, et al. Intraocular pressure and anterior segment morphometry changes after uneventful phacoemulsification in type 2 diabetic and nondiabetic patients. J Ophthalmol 2019;2019:10. doi: org/10.1155/2019/9390586.

Yoo C, Amoozgar B, Yang KS, Park JH, Lin SC. Glaucoma severity and intraocular pressure reduction after cataract surgery in eyes with medically controlled glaucoma. Medicine (Baltimore) 2018; 97: e12881. doi: 10.1097/MD.0000000000012881.

Zhao D, Kim MH, Pastor-Barriuso R, et al. A longitudinal study of age-related changes in intraocular pressure: the Kangbuk Samsung health study. Invest Ophthalmol Vis Sci 2014; 55: 6244-50. doi: 10.1167/iovs.14-14151.

Hoehn R, Mirshahi A, Hoffmann EM. Distribution of intraocular pressure and its association with ocular features and cardiovascular risk factors: the Gutenberg health study. Ophthalmology 2013;120:961-8. doi: 10.1016/j.ophtha.2012.10.031.

Panchami, Pai SR, Shenoy JP, Shivakumar J, Kole SB. Postmenopausal intraocular pressure changes in South Indian females. J Clin Diagn Res 2013;7:1322-4. doi: 10.7860/JCDR/2013/5325.3145.