The role of molecular pathology in the precision diagnosis and subclassification of hepatocellular carcinoma

Main Article Content

Kathryn Effendi
Wit Thun Kwa
Akihisa Ueno
Michiie Sakamoto


Hepatocellular carcinoma (HCC) remains a leading cause of cancer death worldwide despite recent advances in surveillance and therapeutic management. The outcomes for HCC patients remain poor, often as a result of late diagnosis or lack of effective treatments. Early detection and precise diagnosis are evidently crucial in improving the prognosis of HCC. However, HCC is a highly heterogeneous cancer with various clinical backgrounds and altered molecular pathways; these factors make its precise diagnosis more difficult. Approximately 25% of HCCs harbor actionable mutations, which are yet to be translated into clinical practice. In the era of precision medicine, molecular or genomic information are indispensable for HCC diagnosis and prognosis. Exploring genomic alterations has become a requirement for identifying the molecular subtypes of HCC. Recent studies have introduced molecular markers to help identify early HCC and to clarify its multistep process of carcinogenesis. The subclassification of tumors into proliferation class and nonproliferation class HCCs gives pointers to the HCC phenotype and facilitates the selection of appropriate treatments. In this review, we broadly summarize some of the latest insights into HCC subclassification from the perspective of molecular pathology. Immunohistochemistry-based subclassification allows improved characterization of HCC in daily clinical practice. Moreover, analysis of the immune microenvironment, intra-tumoral morphological heterogeneity, and imaging features gives additional information regarding the classification of HCC. Combinations of these approaches are expected to inform and advance the precision diagnosis and management of HCC.

Article Details

How to Cite
Effendi, K., Kwa, W. T., Ueno, A., & Sakamoto, M. . (2022). The role of molecular pathology in the precision diagnosis and subclassification of hepatocellular carcinoma. Universa Medicina, 41(2). Retrieved from
Review Article


Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209–49.

Loho IM, Hasan I, Lesmana CR, Dewiasty E, Gani RA. Hepatocellular carcinoma in a tertiary referral hospital in Indonesia: lack of improvement of one-year survival rates between 1998-1999 and 2013-2014. Asian Pac J Cancer Prev 2016;17:2165–70. doi: 10.7314/apjcp.2016.17.4.2165.

Mazzanti R, Arena U, Tassi R. Hepatocellular carcinoma: where are we? World J Exp Med 2016;6:21–36. doi: 10.5493/wjem.v6.i1.21.

Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers 2021;7:6.

Li L, Wang H. Heterogeneity of liver cancer and personalized therapy. Cancer Lett 2016;379:191–7. doi: 10.1016/j.canlet.2015.07.018.

Friemel J, Rechsteiner M, Frick L, et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res 2015;21:1951–61. doi: 10.1158/1078-0432.CCR-14-0122.

Ueno A, Masugi Y, Yamazaki K, et al. Precision pathology analysis of the development and progression of hepatocellular carcinoma: implication for precision diagnosis of hepatocellular carcinoma. Pathol Int 2020;70:140–54. doi: 10.1111/pin.12895.

Effendi K, Sakamoto M. Molecular pathology in early hepatocarcinogenesis. Oncology 2010;78:157–60. doi: 10.1159/000312658.

Kudo M. Early hepatocellular carcinoma: definition and diagnosis. Liver Cancer 2013;2:69-72. doi: 10.1159/000343842.

Theise ND, Park YN, Curado MP, et al. WHO Classification of tumours of the digestive system. Bosman FT, Cameiro F. hruban RH, Theise ND, editors. Hepatocellular carcinoma. 4th ed. Lyon: International Agency for Research on Cancer;2010.p.205-16.

Wang Z, Gou W, Liu M, Sang W, Chu H, Zhang W. Expression of P53 and HSP70 in chronic hepatitis, liver cirrhosis, and early and advanced hepatocellular carcinoma tissues and their diagnostic value in hepatocellular carcinoma: an immunohistochemical study. Med Sci Monit 2015;21:3209-15. doi: 10.12659/msm.895592.

Wang B, Lan T, Xiao H, et al. The expression profiles and prognostic values of HSP70s in hepatocellular carcinoma. Cancer Cell Int 2021;21:286. doi: 10.1186/s12935-021-01987-9.

Tsuchiya N, Sawada Y, Endo I, Saito K, Uemura Y, Nakatsura T. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J Gastroenterol 2015;21:10573–83. doi: 10.3748/wjg.v21.i37.10573.

Tangkijvanich P, Chanmee T, Komtong S, et al. Diagnostic role of serum glypican-3 in differentiating hepatocellular carcinoma from non-malignant chronic liver disease and other liver cancers. J Gastroenterol Hepatol 2010;25:129–37. doi: 10.1111/j.1440-1746.2009.05988.x.

Liu P, Lu D, Al-Ameri A, et al. Glutamine synthetase promotes tumor invasion in hepatocellular carcinoma through mediating epithelial-mesenchymal transition. Hepatol Res 2020;50:246-57. doi: 10.1111/hepr.13433.

Sciarra A, Di Tommaso L, Nakano M, et al. Morphophenotypic changes in human multistep hepatocarcinogenesis with translational implications. J Hepatol 2016;64:87-93. doi: 10.1016/j.jhep.2015.08.031.

Moudi B, Heidari Z, Mahmoudzadeh-Sagheb H, et al. Concomitant use of heat-shock protein 70, glutamine synthetase and glypican-3 is useful in diagnosis of HBV-related hepatocellular carcinoma with higher specificity and sensitivity. Eur J Histochem 2018;62:2859. doi: 10.4081/ejh.2018.2859.

Torbenson MS, Ng IOL, Park YN, Roncalli M, Sakamoto M. Hepatocellular carcinoma, WHO classification of tumors of the digestive system, 5th ed. Lyon: International Agency for Research on Cancer (IARC); 2019.

Effendi K, Mori T, Komuta M, Masugi Y, Du W, Sakamoto M. Bmi-1 gene is upregulated in early-stage hepatocellular carcinoma and correlates with ATP-binding cassette transporter B1 expression. Cancer Sci 2010;101:666–72. doi: 10.1111/j.1349-7006.2009.01431.x.

Sharaf K, Lechner A, Haider SP, et al. Discrimination of cancer stem cell markers ALDH1A1, BCL11B, BMI-1, and CD44 in different tissues of HNSCC patients. Curr Oncol 2021;28:2763–74. doi: 10.3390/curroncol28040241.

Bolomsky A, Schlangen K, Schreiner W, Zojer N, Ludwig H. Targeting of BMI-1 with PTC-209 shows potent anti-myeloma activity and impairs the tumour microenvironment. J Hematol Oncol 2016;9:17. doi: 10.1186/s13045-016-0247-4.

Kurihara K, Isobe T, Yamamoto G, Tanaka Y, Katakura A, Tachikawa T. Expression of BMI1 and ZEB1 in epithelial-mesenchymal transition of tongue squamous cell carcinoma. Oncol Rep 2015;34:771–8. doi: 10.3892/or.2015.4032.

Yu J, Chen L, Bao Z, et al. BMI 1 promotes invasion and metastasis in endometrial adenocarcinoma and is a poor prognostic factor. Oncol Rep 2020;43:1630–40. doi: 10.3892/or.2020.7539.

Zhang R, Wu WR, Shi XD, et al. Dysregulation of Bmi1 promotes malignant transformation of hepatic progenitor cells. Oncogenesis 2016;5:e203. doi: 10.1038/oncsis.2016.6.

Fu J, Li M, Wu DC, Liu LL, Chen SL, Yun JP. Increased expression of CAP2 indicates poor prognosis in hepatocellular carcinoma. Transl Oncol 2015t;8:400-6. doi: 10.1016/j.tranon.2015. 08.003.

Effendi K, Yamazaki K, Mori T, Masugi Y, Makino S, Sakamoto M. Involvement of hepatocellular carcinoma biomarker, cyclase-associated protein 2 in zebrafish body development and cancer progression. Exp Cell Res 2013;319:35–44. doi: 10.1016/j.yexcr.2012.09.013.

Masugi Y, Tanese K, Emoto K, et al. Overexpression of adenylate cyclase-associated protein 2 is a novel prognostic marker in malignant melanoma. Pathol Int 2015;65:627–34. doi: 10.1111/pin.12351.

Adachi M, Masugi Y, Yamazaki K, et al. Upregulation of cyclase-associated actin cytoskeleton regulatory protein 2 in epithelial ovarian cancer correlates with aggressive histologic types and worse outcomes. Jpn J Clin Oncol 2020;50:643–52. doi: 10.1093/jjco/hyaa026.

Ojima H, Masugi Y, Tsujikawa H, et al. Early hepatocellular carcinoma with high-grade atypia in small vaguely nodular lesions. Cancer Sci 2016; 107:543–50. doi: 10.1111/cas.12893.

Shimada S, Mogushi K, Akiyama Y, et al. Comprehensive molecular and immunological characterization of hepatocellular carcinoma. EBioMedicine 2019;40:457-70. doi: 10.1016/j.ebiom.2018.12.058.

Boyault S, Rickman DS, de Reyniès A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 2007;45:42–52. doi: 10.1002/hep.21467.

Hoshida Y, Nijman SM, Kobayashi M, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 2009;69: 7385–92. doi: 10.1158/0008-5472.CAN-09-1089.

Hoshida Y, Toffanin S, Lachenmayer A, Villanueva A, Minguez B, Llovet JM. Molecular classification and novel targets in hepatocellular carcinoma: recent advancements. Semin Liver Dis 2010;30:35–51. doi: 10.1055/s-0030-1247131.

Morgan RG, Mortensson E, Williams AC. Targeting LGR5 in Colorectal Cancer: therapeutic gold or too plastic? Br J Cancer 2018;118:1410-8. doi: 10.1038/s41416-018-0118-6.

Fukuma M, Tanese K, Effendi K, et al. Leucine-rich repeat-containing G protein-coupled receptor 5 regulates epithelial cell phenotype and survival of hepatocellular carcinoma cells. Exp Cell Res 2013;319:113–21. doi: 10.1016/j.yexcr.2012.10.011.

Effendi K, Yamazaki K, Fukuma M, Sakamoto M. Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) represents a typical Wnt/â-catenin pathway-activated hepatocellular carcinoma. Liver Cancer 2014;3:451–7. doi: 10.1159/000343873.

Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 2015;149:1226–39.e4. doi: 10.1053/j.gastro.2015.05.061.

Désert R, Nieto N, Musso O. Dimensions of hepatocellular carcinoma phenotypic diversity. World J Gastroenterol 2018;24:4536–47. doi:10.3748/wjg.v24.i40.4536

Wu Y, Liu Z, Xu X. Molecular subtyping of hepatocellular carcinoma: a step toward precision medicine. Cancer Commun (Lond) 2020;40:681–93. doi: 10.1002/cac2.12115.

Chan SL, Wong AM, Lee K, Wong N, Chan AK. Personalized therapy for hepatocellular carcinoma: where are we now? Cancer Treat Rev 2016;45:7786. doi: 10.1016/j.ctrv.2016.02.008.

Tsujikawa H, Masugi Y, Yamazaki K, Itano O, Kitagawa Y, Sakamoto M. Immunohistochemical molecular analysis indicates hepatocellular carcinoma subgroups that reflect tumor aggressiveness. Hum Pathol 2016;50:24–33. doi: 10.1016/j.humpath.2015.10.014.

Calderaro J, Couchy G, Imbeaud S, et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J Hepatol 2017;67:727–38. doi: 10.1016/j.jhep.2017.05.014.

Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012;21:309–22. doi: 10.1016/j.ccr.2012.02.022.

Palucka AK, Coussens LM. The basis of oncoimmunology. Cell 2016;164:1233–47. doi: 10.1016/j.cell.2016.01.049.

Sia D, Jiao Y, Martinez-Quetglas I, et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 2017;153:812–26. doi: 10.1053/j.gastro.2017.06.007.

El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017;389:2492–502. doi: 10.1016/S0140-6736(17)31046–2.

Saung MT, Pelosof L, Casak S, et al. FDA approval summary: nivolumab plus ipilimumab for the treatment of patients with hepatocellular carcinoma previously treated with sorafenib. Oncologist 2021;26:797–806. doi: 10.1002/onco.13819.

Morita M, Nishida N, Sakai K, et al. Immunological microenvironment predicts the survival of the patients with hepatocellular carcinoma treated with anti-PD-1 antibody. Liver Cancer 2021;10:380–93. doi: 10.1159/000516899.

Kurebayashi Y, Ojima H, Tsujikawa H, et al. Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification. Hepatology 2018;68:1025–41. doi: 10.1002/hep.29904.

Nishida N, Kudo M. Immune phenotype and immune checkpoint inhibitors for the treatment of human hepatocellular carcinoma. Cancers (Basel) 2020;12:1274. doi: 10.3390/cancers 12051274.

Kudo M. Gd-EOB-DTPA-MRI could predict WNT/â-catenin mutation and resistance to immune checkpoint inhibitor therapy in hepatocellular carcinoma. Liver Cancer 2020;9: 479-90. doi: 10.1159/000509554.

Pinyol R, Sia D, Llovet JM. Immune exclusion-Wnt/CTNNB1 class predicts resistance to immunotherapies in HCC. Clin Cancer Res 2019; 25:2021-3. doi: 10.1158/1078-0432.

Losic B, Craig AJ, Villacorta-Martin C, et al. Intratumoral heterogeneity and clonal evolution in liver cancer. Nat Commun 2020;11:291. doi: 10.1038/s41467-019-14050-z.

Kalasekar SM, VanSant-Webb CH, Evason KJ. Intratumor heterogeneity in hepatocellular carcinoma: challenges and opportunities. Cancers (Basel) 2021;13:5524. doi: 10.3390/cancers 13215524.

Xue R, Li R, Guo H, et al. Variable intra-tumor genomic heterogeneity of multiple lesions in patients with hepatocellular carcinoma. Gastroenterology;150:998-1008. doi: 10.1053/j.gastro.2015.12.033.

Bell RJ, Rube HT, Xavier-Magalhães A, et al. Understanding TERT promoter mutations: a common path to immortality. Mol Cancer Res 2016;14:315–23. doi: 10.1158/1541-7786.MCR-16-0003.

Quaas A, Oldopp T, Tharun L, et al. Frequency of TERT promoter mutations in primary tumors of the liver. Virchows Arch 2014;465:673–7. doi: 10.1007/s00428-014-1658-7.

Huang DS, Wang Z, He XJ, et al. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer 2015;51:969–76. doi: 10.1016/j.ejca.2015.03.010.

Nault JC, Mallet M, Pilati C, et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat Commun 2013;4: 2218. doi: 10.1038/ncomms3218.

Nault JC, Zucman-Rossi J. TERT promoter mutations in primary liver tumors. Clin Res Hepatol Gastroenterol 2016;40:9–14. doi: 10.1016/j.clinre.2015.07.006.

Nault JC, Calderaro J, Di Tommaso L, et al. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology 2014;60:1983–92. doi: 10.1002/hep.27372.

Pinyol R, Tovar V, Llovet JM. TERT promoter mutations: gatekeeper and driver of hepatocellular carcinoma. J Hepatol 2014;61:685–7. doi: 10.1016/j.jhep.2014.05.028.

Kwa WT, Effendi K, Yamazaki K, et al. Telomerase reverse transcriptase (TERT) promoter mutation correlated with intratumoral heterogeneity in hepatocellular carcinoma. Pathol Int 2020;70: 624–32. doi: 10.1111/pin.12974.

The Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 2017;169:1327–41.e23. doi: 10.1016/j.cell. 2017. 05.046.

Hoshida Y, Fuchs BC, Bardeesy N, Baumert TF, Chung RT. Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. J Hepatol 2014;61(1 Suppl):S79–90. doi: 10.1016/j.jhep.2014.07.010.

Jeong SW, Jang JY, Chung RT. Hepatitis C virus and hepatocarcinogenesis. Clin Mol Hepatol 2012;18:347–56. doi: 10.3350/cmh.2012.18.4.347.

Poetter-Lang S, Bastati N, Messner A, et al. Quantification of liver function using gadoxetic acid-enhanced MRI. Abdom Radiol (NY) 2020;45: 3532–44. doi: 10.1007/s00261-020-02779-x.

Beer L, Mandorfer M, Bastati N, et al. Inter- and intra-reader agreement for gadoxetic acid-enhanced MRI parameter readings in patients with chronic liver diseases. Eur Radiol 2019;29: 6600–10. doi: 10.1007/s00330-019-06182-z.

Ichikawa T, Sano K, Morisaka H. Diagnosis of pathologically early HCC with EOB-MRI: experiences and current consensus. Liver Cancer 2014;3:97-107. doi: 10.1159/000343865.

Ueno A, Masugi Y, Yamazaki K, et al. OATP1B3 expression is strongly associated with Wnt/â-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J Hepatol 2014;61:1080–7. doi: 10.1016/j.jhep. 2014.06.008.

Harding JJ, Nandakumar S, Armenia J, et al. Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res 2019;25:2116–26. doi: 10.1158/1078-0432.CCR-18-2293.

Komuta M. Histological heterogeneity of primary liver cancers: clinical relevance, diagnostic pitfalls and the pathologist’s role. Cancers (Basel) 2021; 13:2871. doi: 10.3390/cancers13122871.

Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019;16:589–604. doi: 10.1038/s41575-019-0186-y.

Renne SL, Sarcognato S, Sacchi D, et al. Hepatocellular carcinoma: a clinical and pathological overview. Pathologica 2021;113:203–17. doi: 10.32074/1591-951X-295.

International Agency for Research on Cancer. Global cancer data: GLOBOCAN 2018. Geneva: International Agency for Research on Cancer; 2018.