Influence of interspecies interactions on biomass and extracellular polymeric substances of bacterial biofilms

Main Article Content

Mercedes Baltazara Schettini Alava
Naga Raju Maddela

Abstract

Background
Studies with emphasis on pure and mixed-species biofilms are of significant importance in understanding biofilm formation mechanisms during microbial infections. This research aims to evaluate pure- and dual-species biofilms of Escherichia coli (code A), Staphylococcus aureus (code B), Klebsiella pneumoniae (code C) and Pseudomonas aeruginosa (code D) pathogenic bacterial species and their production of biofilm exopolysaccharides at laboratory scale.


Methods
Biofilm biomass (A595) of pure- and dual-species cultures was determined by means of a microtiter plate assay in triplicate using a microplate photometer (Fisher Scientific, type-357). Extracellular polymeric substances (EPS) and soluble microbial products (SMP) were extracted from the biofilm cells (pure- and dual-species cultures) using the alkaline-heat extraction method. Dry weights (g/L) of EPS and SMP were determined by drying the samples at 105 °C for 8 hours.


Results
Klebsiella pneumoniae biofilm biomass accounted for a 28-72% greater biofilm biomass than the other bacteria. Experimental values of dual-species biofilm biomasses were in the range of 6% to 30% over theoretical values. The experimental value of one dual-species (bacteria B + D) biofilm biomass was 30% higher than its expected value. Decrease or increase in the dual-species biofilm biomass of either bacteria A+C or bacteria B+C combinations was totally dependent on the cell density of bacteria C.


Conclusions
Biofilm biomass of pure-species cultures was totally species-dependent, and the biofilm biomass of four species was in the following order: bacteria C > D > A > B. Relation between biofilm biomasses and SMP or EPS was inconsistent.

Article Details

How to Cite
Schettini Alava, M. B. ., & Maddela, N. R. (2023). Influence of interspecies interactions on biomass and extracellular polymeric substances of bacterial biofilms . Universa Medicina, 42(1), 84–93. https://doi.org/10.18051/UnivMed.2023.v42.84-93
Section
Original Articles

References

Sánchez REA. Complicaciones frecuentes en pacientes adultos relacionado con la traqueotomía percutánea en el área de cuidados intensivos del Hospital Alfredo Noboa Montenegro. [Frequent complications in adult patients in connection with percutaneous tracheotomy in the intensive care area of the Alfredo Noboa Montenegro Hospital.] [Thesis]. [Quito (Ecuador)]: Technical University of Ambato, Faculty of Health Sciences; 2022. Spanish.

Center for Biofilm Engineering. International Biofilm Standards Task Group position paper. Montana: Center for Biofilm Engineering Montana State University;2022.

Serda M, Becker FG, Cleary M, et al. Synteza i aktywnoœæ biologiczna nowych analogów tiosemikarbazonowych chelatorów ¿elaza. [Synthesis and biological activity of new analogs of thiocarbazone iron chelators]. In: Balint G, Antala B, Carty C, Mabieme JMA, Amar IB, Kaplanova A, editors. Katowice (Poland): Uniwersytet œl¹ski; 2013. Polish.

Center for Biofilm Engineering. Biofilm basics: Section 1. Montana: Center for Biofilm Engineering Montana State University; 2022.

Cangui-Panchi SP, Ñacato-Toapanta AL, Enríquez-Martínez LJ, Reyes J, Garzon-Chavez D, Machado A. Biofilm-forming microorganisms causing hospital-acquired infections from intravenous catheter: a systematic review. Curr Res Microb Sci 2022;3:100175. doi: 10.1016/j.crmicr.2022. 100175.

Ghafoor A, Hay ID, Rehm BHA. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 2011;77:5238-46. doi: 10.1128/AEM.00637-11.

Shin DS, Eom YB. Efficacy of zerumbone against dual-species biofilms of Candida albicans and Staphylococcus aureus. Microb Pathog 2019; 137:103768. DOI: 10.1016/j.micpath.2019.103768.

Kim U, Kim JH, Lee SY, Oh SW. Detection of Bacillus cereus and Pseudomonas fluorescens in dual-species biofilm via real-time PCR and eradication using grapefruit seed extract. LWT 2022;165 113679. doi: 10.1016/j.lwt.2022.113679.

Zhang W, Mi X, Zhang C, et al. Meat-derived Escherichia coli and Pseudomonas fragi manage to co-exist in dual-species biofilms by adjusting gene-regulated competitive strength. Food Microbiol 2023;109:104122. doi: 10.1016/j.fm.2022.104122.

Mohd Nadzir M, Nurhayati RW, Idris FN, Nguyen MH. Biomedical applications of bacterial exopolysaccharides: a review. Polymers (Basel) 2021;13:530. doi: 10.3390/polym13040530.

Watters C, Fleming D, Bishop D, Rumbaugh KP. Host responses to biofilm. Prog Mol Biol Transl Sci 2016;142:193-239. doi: 10.1016/bs.pmbts.2016. 05.007.

Moscovici M. Present and future medical applications of microbial exopolysaccharides. Front Microbiol 2015;6:1012. doi: 10.3389/fmicb.2015.01012.

Inkemia. Exopolisacaridos (EPS). Barcelona: Inkemia;2022.

Kaur N, Dey P. Bacterial exopolysaccharides as emerging bioactive macromolecules: from fundamentals to applications. Res Microbiol 2022;29:104024. doi: 10.1016/j.resmic.2022.104024.

Mehrishi P, Agarwal P, Broor S, Sharma A. Antibacterial and antibiofilm properties of Azadirachta indica (neem), Aloe vera (aloe vera), and Mentha piperita (peppermint) against multidrug-resistant clinical isolates. Biomed Biotechnol Res J 2022;6:98-104. DOI: 10.4103/bbrj.bbrj_178_21.

Floyd KA, Eberly AR, Hadjifrangiskou M. Adhesion of bacteria to surfaces and biofilm formation on medical devices. In: Biofilms and implantable medical devices: infection and control. Elsevier Inc.; 2017. p. 47-95 doi: 10.1016/B978-0-08-100382-4.00003-4.

Jamal M, Ahmad W, Andleeb S, et al. Bacterial biofilm and associated infections. J Chin Med Assoc 2018;81:7-11. doi: 10.1016/j.jcma.2017.07. 012.

Camacho MI, Georgellis D, Álvarez AF. The BarA/UvrY-CsrA regulatory circuitry in Escherichia coli and others ã-proteobacteria. TIP 2016;19:15-23. https://doi.org/10.1016/j.recqb.2016.02.002.

Carrada López G, Castañón Sánchez CA. Quercetin attenuates Staphylococcus aureus virulence by reducing alpha-toxin secretion. Rev Argent Microbiol 2018;50:131–5. http://dx.doi.org/10.1016/j.ram.2017.07.002.

Yuan L, Wang N, Sadiq FA, He G. Interspecies interactions in dual-species biofilms formed by psychrotrophic bacteria and the tolerance of sessile communities to disinfectants. J Food Prot 2020;83:951-8. doi: 10.4315/0362-028X.JFP-19-396m.

Costa OYA, Raaijmakers JM, Kuramae EE. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 2018;9:1636. doi: 10.3389/fmicb.2018.01636.

Maddela NR, Meng F. Discrepant roles of a quorum quenching bacterium (Rhodococcus sp. BH4) in growing dual-species biofilms. Sci Total Environ 2020;713:136402. doi: 10.1016/j.scitotenv. 2019.136402.

Maddela NR, Zhou Z, Yu Z, Zhao S, Meng F. Functional determinants of extracellular polymeric substances in membrane biofouling: experimental evidence from pure-cultured sludge bacteria. Appl Environ Microbiol 2018;84:e00756-18. doi: 10.1128/AEM.00756-18.

Surgers L, Boyd A, Girard PM, Arlet G, Decré D. Biofilm formation by ESBL-producing strains of Escherichia coli and Klebsiella pneumoniae. Int J Med Microbiol 2019;309:13-8. doi: 10.1016/j.ijmm.2018.10.008.

Cangui-Panchi SP, Ñacato-Toapanta AL, Enríquez-Martínez LJ, Reyes J, Garzon-Chavez D, Machado A. Biofilm-forming microorganisms causing hospital-acquired infections from intravenous catheter: a systematic review. Curr Res Microb Sci 2022;3:100175. doi: 10.1016/j.crmicr.2022. 100175.

Hernandez-Cuellar E, Guerrero-Barrera AL, Avelar-Gonzalez FJ, et al. Characterization of Candida albicans and Staphylococcus aureus polymicrobial biofilm on different surfaces. Rev Iberoam Micol 2022;39:36-43. doi: 10.1016/j.riam.2022.04.001.

Wang Y, Hong X, Liu J, Zhu J, Chen J. Interactions between fish isolates Pseudomonas fluorescens and Staphylococcus aureus in dual-species biofilms and sensitivity to carvacrol. Food Microbiol 2020;91:103506. doi: 10.1016/j.fm.2020. 103506.

Shi Y, Huang J, Zeng G, et al. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: an overview. Chemosphere 2017; 180:396-411. doi: 10.1016/j.chemosphere.2017.04. 042.

Vongkampang T, Rao NS, Grey C, van Niel EWJ. Chitosan flocculation associated with biofilms of C. saccharolyticus and C. owensensis enhances biomass retention in a CSTR. Int J Hydrogen Energy 2021;46:21338-47. https://doi.org/10.1016/j.ijhydene.2021.03.23030.

Xu JG, Hu HX, Han BZ, Chen JY. Interactions between Salmonella Enteritidis and food processing facility isolate Bacillus paramycoides B5 in dual-species biofilms. LWT 2022;156:113053. DOI: 10.1016/j.lwt.2021.113053.