Serum microRNA-126 expression as a biomarker of diabetic retinopathy
Main Article Content
Abstract
Background
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus (DM). Diabetic retinopathy causes permanent blindness in the productive age group and has a multifactorial pathogenesis. MicroRNA-126 (miRNA-126) regulates the expression of the vascular endothelial growth factor (VEGF) gene at the post-transcriptional level, VEGF being an important angiogenic protein regulating inflammation in DR development. This study aimed to determine serum miRNA-126 expression as a biomarker in DM patients with DR.
Methods
This was a cross-sectional study involving 4 healthy persons and 21 type 2 DM patients. Subjects consisted of 4 groups: i) healthy controls, ii) DM patients without diabetic retinopathy (NDR), iii) DM patients with non-proliferative DR (NPDR) and iv) DM patients with proliferative DR (PDR). Venous blood was collected from subjects for miRNA-126 examination by real-time polymerase chain reaction (PCR). MiRNA-126 in each group was analyzed using the One Way Anova test and p<0.05 was considered to be statistically significant.
Results
Mean miRNA-126 expression was significantly decreased in PDR (1.86±1.03) and NPDR (1.01±0.43 ) groups when compared to healthy control (2.44±1.29) and NDR groups (2.15± 0.48) (p=0.027). MiRNA-126 values of less than 1.81 can differentiate NDR from the control group (sensitivity 83%, specificity 75%) and miRNA-126 of less than 1.56 can be used to predict NPDR when compared to the control group (sensitivity 86%, specificity 75%).
Conclusion
Serum miRNA-126 is a potential biomarker for screening of NPDR and NDR in type 2 DM patients, and could be considered a non-invasive diagnostic parameter.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal allows the authors to hold the copyright without restrictions and allow the authors to retain publishing rights without restrictions.
How to Cite
References
Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis 2015;2:1–25. doi: 10.1186/s40662-015-0026-2
Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 2017;128:40–50. doi: 10.1016/j.diabres.2017.03.024.
Wiley H, Chew E, Ferris FL. Nonproliferative diabetic retinopathy and diabetic macular edema. In: Schachat AP, Wilkinson CP, Hinton DR, Sadda SR,Wiedemann P, editors. Ryan’s Retina. 6th ed. London: Elsevier; 2018.p.3210–304.
Sun J, Silva P, Cavallerano J, et al. Proliferative diabetic retinopathy. In: Schachat AP, Wilkinson CP, Hinton DR, Sadda SR, Wiedemann P, editors. Ryan’s Retina. 6th ed. London: Elsevier; 2018.p.3305–48.
Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology 2016;123:1251–359. doi: 10.1016/j.ophtha.2016.02.022.
Zhao Y, Singh RP. The role of anti-vascular endothelial growth factor (anti-VEGF) in the management of proliferative diabetic retinopathy. Drugs Context 2018;7:1–10. doi: 10.7573/dic.212532.
Wang Y, Yan H. MicroRNA-126 contributes to Niaspan treatment induced vascular restoration after diabetic retinopathy. Sci Rep 2016;6:26909. doi: 10.1038/srep26909.
Zampetaki A, Willeit P, Burr S, et al. Angiogenic microRNAs linked to incidence and progression of diabetic retinopathy in type 1 diabetes. Diabetes 2016;65:216–27. doi: 10.2337/db15-0389.
Liu Y, Gao G, Yang C, et al. The role of circulating microRNA-126 (miR-126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus. Int J Mol Sci 2014;15:10567–77. doi: 10.3390/ijms150610567.
Barutta F, Bruno G, Matullo G, et al. MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB Prospective Complications Study. Acta Diabetol 2017;54:133–9. doi: 10.1007/s00592-016-0915-4.
Qin LL, An MX, Liu YL, Xu HC, Lu ZQ. MicroRNA-126: a promising novel biomarker in peripheral blood for dabetic retinopathy. Int J Ophthalmol 2017;10:530–4. doi: 10.18240/ijo.2017.04.05.
Rezk NA, Sabbah NA, Saad MSS. Role of microRNA 126 in screening, diagnosis, and prognosis of diabetic patients in Egypt. IUBMB Life 2016;68:452–8. doi: 10.1002/iub.1502.
Kamel N, Ayoub N, Ibrahim R, Ghalwash A, Khalaf N. Clinical significance of microRNA 126 in diabetic retinopathy in type 2 diabetes mellitus. J Recent Adv Med 2020;1:128–35. doi: 10.21608/JRAM.2020.112534.
Pramanik S, Saha C, Chowdhury S, Bose C, Bhattacharyya NP, Mondal LK. Decreased levels of miR-126 and miR-132 in plasma and vitreous humor of non-proliferative diabetic retinopathy among subjects with type-2 diabetes mellitus. Diabetes Metab Syndr Obes 2022;15:345–58. doi: 10.2147/DMSO.S346097.
Shaker OG, Abdelaleem OO, Mahmoud RH, et al. Diagnostic and prognostic role of serum miR-20b, miR-17-3p, HOTAIR, and MALAT1 in diabetic retinopathy. IUBMB Life 2019;71:310–20. doi: 10.1002/iub.1970.
Qing S, Yuan S, Yun C, et al. Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy. Cell Physiol Biochem 2014;34:1733–40. doi: 10.1159/000366374.
Rawlings-Goss RA, Campbell MC, Tishkoff SA. Global population-specific variation in miRNA associated with cancer risk and clinical biomarkers. BMC Med Genomics 2014;7:53. https://doi.org/10.1186/1755-8794-7-53.
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc 2008;3:1101–8. doi: 10.1038/nprot.2008.73.
Prado MSG, de Goes TC, de Jesus ML, Mendonça LSO, Nascimento JS, Kaneto CM. Identification of miR-328-3p as an endogenous reference gene for the normalization of miRNA expression data from patients with diabetic retinopathy. Sci Rep 2019;9:19677. doi: 10.1038/s41598-019-56172-w.
Badan Penelitian dan Pengembangan Kesehatan Kementerian Kesehatan Republik Indonesia. Laporan Riset Kesehatan Dasar 2018. Lembaga Penerbit Balitbangkes. Jakarta; 2018.
Ye P, Liu J, He F, Xu W, Yao K. Hypoxia-induced deregulation of miR-126 and its regulative effect on VEGF and MMP-9 expression. Int J Med Sci 2014;11:17–23. doi: 10.7150/ijms.7329.
Shi L, Kim AJ, Chang RCA, et al. Deletion of miR-150 exacerbates retinal vascular overgrowth in high-fat-diet induced diabetic mice. PLoS One 2016;11:e0157543. doi: 10.1371/journal.pone. 0157543.
Li EH, Huang QZ, Li GC, Xiang ZY, Zhang X. Effects of miRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene. Biosci Rep 2017;37: BSR20160572. doi: 10.1042/BSR20160572.
Chen N, Wang J, Hu Y, et al. MicroRNA-410 reduces the expression of vascular endothelial growth factor and inhibits oxygen-induced retinal neovascularization. PLoS One 2014;9:e95665. doi: 10.1371/journal.pone.0095665.s002.
Fang S, Ma X, Guo S, Lu J. MicroRNA-126 inhibits cell viability and invasion in a diabetic retinopathy model via targeting IRS-1. Oncol Lett 2017;14:4311–8. doi: 10.3892/ol.2017.669526.
Mishra S, Rizvi A, Pradhan A, Perrone MA, Ali W. Circulating microRNA-126 &122 in patients with coronary artery disease: correlation with small dense LDL. Prostaglandins Other Lipid Mediat 2021;153:106536. doi: 10.1016/j.prostaglandins.2021.106536.
Fu X, Niu T, Li X. MicroRNA-126-3p attenuates intracerebral hemorrhage-induced blood-brain barrier disruption by regulating VCAM-1 expression. Front Neurosci 2019.13:866. doi: 10.3389/fnins.2019.00866.