Ethanol extract of Abrus precatorius L. leaves diminishes inflammatory responses in nicotine-treated human gingival fibroblasts: an in vitro study
Main Article Content
Abstract
BACKGROUND
Nicotine induces oxidative stress in human gingival fibroblasts (HGF) and stimulates the production of cytokines that trigger inflammation. Abrus precatorius L. (AP) leaves contain antioxidants with anti-inflammatory properties that can prevent the formation of free radicals and reduce tissue damage due to inflammation. This study aimed to determine the effect of ethanolic extract of AP leaves (EAP) on interleukin (IL-6) levels and cyclooxygenase-2 (COX-2) gene expression in gingival fibroblasts exposed to nicotine.
METHODS
Cells were randomized into six treatment groups and clustered into the non-treatment control group (NTC), solvent control (SC), nicotine control (NC), and groups treated with nicotine and EAP at doses of 9.375 µg/mL, 18.75 µg/mL, and 37.5 µg/mL, respectively, for 24 hours. IL-6 levels were examined using the Elisa method, while COX-2 gene expression was assessed using PCR. Data were analyzed using Oneway ANOVA and the Kruskal Wallis test.
RESULTS
IL-6 levels and COX-2 expression were considerably higher in the nicotine control group. Conversely, the cell groups treated with nicotine and EAP had substantially decreased levels of both inflammatory markers IL-6 and COX-2 (p=0.029) across all EAP dose levels compared to the nicotine control group. The highest reduction in response was observed at the dose of 9.375 ìg/mL EAP.
CONCLUSION
These results highlight the potential of Abrus precatorius L. in relieving nicotine-induced inflammation in smokers. By suppressing the production of inflammatory mediators IL-6 and COX-2 in HGF, EAP presents a promising avenue for further in vitro research.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal allows the authors to hold the copyright without restrictions and allow the authors to retain publishing rights without restrictions.
How to Cite
References
Elisia I, Lam V, Cho B, et al. The effect of smoking on chronic inflammation, immune function and blood cell composition. Sci Rep 2020;10:19480. doi: 10.1038/s41598-020-76556-7
Wang H, Chen H, Fu Y, et al. Effects of smoking on inflammatory-related cytokine levels in human serum. Molecules 2022;27:3715. doi: 10.3390/molecules27123715.
Holliday RS, Campbell J, Preshaw PM. Effect of nicotine on human gingival, periodontal ligament and oral epithelial cells: a systematic review of the literature. J Dent 2019;86:81-8. doi: 10.1016/j.jdent.2019.05.030..
Javed F, Kellesarian S V., Sundar IK, Romanos GE, Rahman I. Recent updates on electronic cigarette aerosol and inhaled nicotine effects on periodontal and pulmonary tissues. Oral Dis 2017;23:1052-57. doi: 10.1111/odi.12652.
Soleimani F, Dobaradaran S, De-la-Torre GE, Schmidt TC, Saeedi R. Content of toxic components of cigarette, cigarette smoke vs cigarette butts: a comprehensive systematic review. Sci Total Environ 2022;813:152667. doi: 10.1016/j.scitotenv.2021.152667.
Azmi S, Hadi RS, Kusuma I, Suciati Y, Sari W. Nicotine reduces cell viability and induces oxidative stress in human gingival fibroblasts. Univ Med 2024;43:20–30. DOI: https://doi.org/10.18051/UnivMed.2024.v43.20-30.
Nguyen TT, Huynh NNC, Seubbuk S, Nilmoje T, Wanasuntronwong A, Surarit R. Oxidative stress induced by Porphyromonas gingivalis lysate and nicotine in human periodontal ligament fibroblasts. Odontology 2019;107:133-41. doi: 10.1007/s10266-018-0374-1.
Chang CH, Han ML, Teng NC, et al. Cigarette smoking aggravates the activity of periodontal disease by disrupting redox homeostasis- an observational study. Sci Rep 2018;8:11055. doi: 10.1038/s41598-018-29163-6.
Bozkurt SB, Nielsen FH, Hakki SS. Boric acid reverses nicotine-induced cytokine expressions of human gingival fibroblasts. Biol Trace Elem Res 2023;201:1174-80. doi: 10.1007/s12011-022-03243-1.
Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat Res Rev Mutat Res 2021;787: 108365. doi: 10.1016/j.mrrev.2021.108365.
Perkasa AY. Utilization of the saga plant Abrus precatorius L. in Indonesian folk medicine. MAU J Agr Nat 2024:4:1-8. https://doi.org/10.59359/maujan.1311263
Kaula BC, Mishra R, Geeta, Kumar S, Mohanty A. Phytoconstituents and ethnopharmacological activities of Abrus precatorius L. (Fabaceae): a review. Vegetos 2022;35:869–79. Doi: 10.1007/s42535-022-00397-0.
Okoro EE, Maharjan R, Jabeen A, et al. Isoflavanquinones from Abrus precatorius roots with their antiproliferative and anti-inflammatory effects. Phytochemistry 2021;187:112743. doi: 10.1016/j.phytochem.2021.112743.
Ahmadkhaniha R, Yousefian F, Rastkari N. Impact of smoking on oxidant/antioxidant status and oxidative stress index levels in serum of the university students. J Environ Health Sci Eng 2021;19:1043-6. doi: 10.1007/s40201-021-00669-y.
Kumboyono K, Chomsy IN, Hakim AK, et al. Detection of vascular inflammation and oxidative stress by cotinine in smokers: measured through interleukin-6 and superoxide dismutase. Int J Gen Med 2022;15:7319-28. doi: 10.2147/IJGM.S367125.
Shanker YR, Surya K, Mani TP, Pathak AK, Ali MA. Transcript levels of COX-2, TNF-α, IL-6 and IL-10 in chronic obstructive pulmonary disease: an association with smoking and severity. Res J Biotech 2022;17:90-7. DOI: 10.25303/1710rjbt90097.
Malińska D, Więckowski MR, Michalska B, et al. Mitochondria as a possible target for nicotine action. J Bioenerg Biomembr 2019;51:259-76. doi: 10.1007/s10863-019-09800-z.
Zhang W, Lin H, Zou M, et al. Nicotine in inflammatory diseases: anti-inflammatory and pro-inflammatory effects. Front Immunol 2022;13:826889. doi: 10.3389/fimmu.2022.826889.
Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: a review. J Cell Physiol 2019;234:5683-99. doi: 10.1002/jcp.27411.
Mahmoud AA, Osman Abdel-Aziz H, Elbadr M, Elbadre H. Effect of nicotine on STAT1 pathway and oxidative stress in rat lungs. Rep Biochem Mol Biol 2021;10:429-36. doi: 10.52547/rbmb.10.3.429.
Xu Y, Wang J, He Z, et al. A review on the effect of COX-2-mediated mechanisms on development and progression of gastric cancer induced by nicotine. Biochem Pharmacol 2024;220:115980. doi: 10.1016/j.bcp.2023.115980.
Ye D, Rahman I. Emerging oral nicotine products and periodontal diseases. Int J Dent 2023;2023:9437475. doi: 10.1155/2023/9437475..
Qian H, Wang L, Li Y, et al. The traditional uses, phytochemistry and pharmacology of Abrus precatorius L.: a comprehensive review. J Ethnopharmacol 2022;296:115463. doi: 10.1016/j.jep.2022.115463.
Aswin RK, Tridiganita IS, Arif NMA, Gavrila AP, Dina DA, Gabrielle AVP. Abrus precatorius: a comprehensive insight into the phytochemical, pharmacological, therapeutic activities and safety. J Drug Deliv Ther 2022 ;12:151–7. DOI: https://doi.org/10.22270/jddt.v12i1.5173.
Vijayan S, Margesan T. Arthritis alleviation: unveiling the potential in Abrus precatorius macerated oil. Future Sci OA 2024;10:FSO981. doi: 10.2144/fsoa-2023-0248.
Omoboyowa DA, Omomule OM, Balogun TA, Saibu OA, Metibemu DS. Protective potential of ethylacetate extract of Abrus precatorius (Linn) seeds against HCl/EtOH-induced gastric ulcer via pro-inflammatory regulation: In vivo and in silico study. Phytomedicine Plus 2021;1:100145. DOI: 10.1016/j.phyplu.2021.100145.
Falayi OO, Oyagbemi AA, Omobowale TO, et al. Nephroprotective properties of the methanol stem extract of Abrus precatorius on gentamicin-induced renal damage in rats. J Complement Integr Med 2018;16: /j/jcim.2019.16.issue-3/jcim-2017-0176/jcim-2017-0176.xml. doi: 10.1515/jcim-2017-0176.
Saini M, Malik JK. In-silico validation of glycyrrhizin against proinflammatory mediator COX-2: anti-proliferative potential. South Asian Res J Pharm Sci 2023;5:206–12. DOI: 10.36346/sarjps.2023.v05i05.004.
Wang G, Hiramoto K, Ma N, et al. Glycyrrhizin attenuates carcinogenesis by inhibiting the inflammatory response in a murine model of colorectal cancer. Int J Mol Sci 2021;22:1–16. doi: 10.3390/ijms22052609.
Abdulai IL, Kwofie SK, Gbewonyo WS, Boison D, Puplampu JB, Adinortey MB. Multitargeted effects of vitexin and isovitexin on diabetes mellitus and its complications. Sci World J 2021;2021:6641128. doi: 10.1155/2021/6641128.
Wan Y, Liu J, Mai Y, et al. Current advances and future trends of hormesis in disease. NPJ Aging 2024;10:26. doi: 10.1038/s41514-024-00155-3.
Forcina L, Franceschi C, Musarò A. The hormetic and hermetic role of IL-6. Ageing Res Rev 2022;80:101697. doi: 10.1016/j.arr.2022.101697.