Emerging and reemerging human fungal pathogens that affect people with weakened immune systems: a systematic review

Main Article Content

Amere Genet
Abayeneh Girma


Emerging and reemerging human fungal pathogens are becoming more closely associated with morbidity and mortality, with 13 million infections and 1.5 million deaths per year. They are most often associated with critically ill and immunosuppressed patients. Therefore, this systematic review focused on emerging and reemerging human fungal pathogens that affect immunosuppressed individuals.

A systematic literature search was performed using PubMed, ScienceDirect, Web of Science, Google Scholar, and other sources (Google engine and manual search using a reference list). The data were extracted in a structured format prepared using Microsoft Excel.

Cryptococcus neoformans, Candida auris, Aspergillus fumigatus, Candida albicans, Nakaseomyces glabrata (Candida glabrata), Histoplasma spp., Mucorales (Rhizopus spp., Mucor spp., Lichtheimia spp., and others), Fusarium spp., Candida tropicalis, Candida parapsilosis, Pichia kudriavzevii (Candida krusei), Talaromyces marneffei and Pneumocystis jirovecii were emerging and reemerging fungal pathogens reported among critically ill and immunocompromised patients including but not limited to HIV patients and patients with infectious diseases such as influenza, COVID-19, and tuberculosis as well as chronic conditions or co-morbidities such as asthma, hepatic cirrhosis, cancer, diabetes, cystic fibrosis (CF), transplant recipients, and chronic obstructive pulmonary disease (COPD). Climate change, agricultural activities, occupational hazards, deforestation, migratory trends of people, soil dispersion, decreased immunity of patients, biofilm development, medication tolerance, and resistance to antifungal therapies are all factors that contribute to the emergence of fungal diseases.

This review makes recommendations for policymakers, public health experts, and other stakeholders to improve the response to these fungal infections, including laboratory capacity and surveillance, fostering sustainable research and innovation, implementing public health initiatives, and limiting the development of antifungal drug resistance.

Article Details

How to Cite
Genet, A. ., & Girma, A. . (2024). Emerging and reemerging human fungal pathogens that affect people with weakened immune systems: a systematic review. Universa Medicina, 43(1), 102–113. https://doi.org/10.18051/UnivMed.2024.v43.102-113
Review Article


Garvey M, Meade E, Rowan NJ. Effectiveness of front line and emerging fungal disease prevention and control interventions and opportunities to address appropriate eco-sustainable solutions. Sci Total Environ 2022;851(Pt 2):158284. https://doi.org/10.1016/j.scitotenv.2022.158284.

Rayens E, Norris KA, editors. Prevalence and healthcare burden of fungal infections in the United States, 2018. Open Forum Infect Dis 2022;9:ofab593. doi: 10.1093/ofid/ofab593.

Su H, Han L, Huang X. Potential targets for the development of new antifungal drugs. J Antibiot (Tokyo) 2018;71:978-991. doi: 10.1038/s41429-018-0100-9.

Garvey M, Rowan NJ. Pathogenic drug resistant fungi: a review of mitigation strategies. Int J Mol Sci 2023;24:1584. doi: 10.3390/ijms24021584.

Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi (Basel) 2017;3:57. doi: 10.3390/jof3040057.

Huang J, Liu C, Zheng X. Clinical features of invasive fungal disease in children with no underlying disease. Sci Rep 2022;12:208. doi: 10.1038/s41598-021-03099-w.

Oliveira M, Oliveira D, Lisboa C, Boechat JL, Delgado L. Clinical manifestations of human exposure to fungi. . J Fungi (Basel) 2023;9:381. doi: 10.3390/jof9030381.

Firacative C. Invasive fungal disease in humans: are we aware of the real impact? Mem Inst Oswaldo Cruz 2020;115:e200430. doi: 10.1590/0074-02760200430.

Xu L, Chen B, Wang F, et al. A higher rate of pulmonary fungal infection in chronic obstructive pulmonary disease patients with influenza in a large tertiary hospital. Respiration 2019;98:391-400. https://doi.org/10.1159/000501410.

Hoenigl M, Seidel D, Sprute R, et al. COVID-19-associated fungal infections. Nature Microbiol 2022;7:1127-40. https://doi.org/10.1038/s41564-022-01172-2.

Ekeng BE, Davies AA, Osaigbovo II, Warris A, Oladele RO, Denning DW. Pulmonary and extrapulmonary manifestations of fungal infections misdiagnosed as tuberculosis: the need for prompt diagnosis and management. J Fungi 2022;8:460. https://doi.org/10.3390/jof8050460.

Hughes KM, Price D, Torriero AA, Symonds MR, Suphioglu C. Impact of fungal spores on asthma prevalence and hospitalization. Int J Mol Sci 2022;23:4313. https://doi.org/10.3390/ijms23084313.

Verma N, Singh S, Singh M, et al. Global epidemiological burden of fungal infections in cirrhosis patients: a systematic review with meta‐analysis. Mycoses 2022;65:266-84. https://doi.org/10.1111/myc.13387.

Ruhnke M, Cornely OA, Schmidt‐Hieber M, et al. Treatment of invasive fungal diseases in cancer patients—Revised 2019 Recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Mycoses 2020;63:653-82. https://doi.org/10.1111/myc.13082.

Lao M, Li C, Li J, Chen D, Ding M, Gong Y. Opportunistic invasive fungal disease in patients with type 2 diabetes mellitus from Southern China: clinical features and associated factors. J Diabetes Investig 2020;11:731-44. doi: 10.1111/jdi.13183.

Schwarz C, Eschenhagen P, Bouchara J. Emerging fungal threats in cystic fibrosis. Mycopathologia 2021;186:639-53. https://doi.org/10.1007/s11046-021-00574-w.

Hosseini‐Moghaddam SM, Ouédraogo A, Naylor KL, et al. Incidence and outcomes of invasive fungal infection among solid organ transplant recipients: a population‐based cohort study. Transpl Infect Dis 2020;22:e13250. doi: 10.1111/ tid.13250.

Konsoula A, Tsioutis C, Markaki I, Papadakis M, Agouridis AP, Spernovasilis N. Lomentospora prolificans: an emerging opportunistic fungal pathogen. Microorganisms 2022;10:1317. https://doi.org/10.3390/microorganisms10071317.

Spallone A, Schwartz IS. Emerging fungal infections. Infect Dis Clin North Am 2021;35: 261-77. doi: 10.1016/j.idc.2021.03.014.

Gow NAR, Johnson C, Berman J, et al. The importance of antimicrobial resistance in medical mycology. Nat Commun 2022;13:5352. doi: 10.1038/s41467-022-32249-5.

Alastruey-Izquierdo A. WHO fungal priority pathogens list to guide research, development and public health action. Geneva: World Health Organization; 2022.

Parums DV. Editorial: The World Health Organization (WHO) fungal priority pathogens list in response to emerging fungal pathogens during the COVID-19 pandemic. Med Sci Monit 2022;28:e939088. doi: 10.12659/MSM.939088.

Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372: n71. doi: 10.1136/bmj.n71.

Lin YY, Shiau S, Fang CT. Risk factors for invasive Cryptococcus neoformans diseases: a case-control study. PloS One 2015;10:e0119090. https://doi.org/10.1371/journal.pone.0119090.

Calvo B, Melo AS, Perozo-Mena A, et al. First report of Candida auris in America: clinical and microbiological aspects of 18 episodes of candidemia. J Infect 2016;73:369-74. https://doi.org/10.1016/j.jinf.2016.07.008.

Chowdhary A, Sharma C, Meis JF. Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathogens 2017;13:e1006290. https://doi.org/10.1371/journal.ppat.1006290.

Lockhart SR, Etienne KA, Vallabhaneni S, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis 2017;64:134-40. https://doi.org/10.1093/cid/ciw691.

Zhou D, Korfanty GA, Mo M, et al. Extensive genetic diversity and widespread azole resistance in greenhouse populations of Aspergillus fumigatus in Yunnan, China. mSphere. 2021;6: e00066-21. doi: 10.1128/mSphere.00066-21.

Rhodes J, Abdolrasouli A, Dunne K, et al. Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environment. Nature Microbiol 2022;7:663-74. https://doi.org/10.1038/s41564-022-01091-2.

Talapko J, Juzbašić M, Matijević T, et al. Candida albicans—the virulence factors and clinical manifestations of infection. J Fungi 2021;7:79. https://doi.org/10.3390/jof7020079.

Denning DW. Antifungal drug resistance: an update. Eur J Hosp Pharm 2022 ;29:109-12. doi: 10.1136/ejhpharm-2020-002604.

Denning DW, Perlin DS, Muldoon EG, et al. Delivering on antimicrobial resistance agenda not possible without improving fungal diagnostic capabilities. Emerg Infect Dis 2017 ;23:177-83. doi: 10.3201/eid2302.152042.

Rodrigues AM, Beale MA, Hagen F, et al. The global epidemiology of emerging Histoplasma species in recent years. Stud Mycol 2020;97: 100095. doi: 10.1016/j.simyco.2020.02.001.

Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med 2012;4: 165rv13. doi: 10.1126/scitranslmed.3004404.

Tlamçani Z, Er-Rami M. Fungal opportunist infection: common and emerging fungi in immunocompromised patients. J Immunol Tech Infect Dis 2013;2:2-7.

Trofa D, Gácser A, Nosanchuk JD. Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 2008;21:606-25. https://doi.org/ 10.1128/CMR.00013-08.

Tóth R, Nosek J, Mora-Montes HM, et al. Candida parapsilosis: from genes to the bedside. Clin Microbiol Rev 2019;32:10.1128/cmr. 00111-18. https://doi.org/10.1128/CMR.00111-18

Bateman M, Oladele R, Kolls JK. Diagnosing Pneumocystis jirovecii pneumonia: a review of current methods and novel approaches. Med Mycol 2020;58:1015-28. https://doi.org/10.1093/ mmy/myaa024.

Ivanov M, Ćirić A, Stojković D. Emerging antifungal targets and strategies. Int J Mol Sci 2022;23:2756. doi: 10.3390/ijms23052756.

Kaur J, Nobile CJ. Antifungal drug-resistance mechanisms in Candida biofilms. Curr Opin Microbiol 2023;71:102237. doi: 10.1016/j.mib.2022.102237.

Branco J, Miranda IM, Rodrigues AG. Candida parapsilosis virulence and antifungal resistance mechanisms: a comprehensive review of key determinants. J Fungi 2023;9:80. https://doi.org/ 10.3390/jof9010080.

Angiolella L. Virulence regulation and drug-resistance mechanism of fungal infection. Microorganisms 2022;10:409. doi: 10.3390/ microorganisms10020409.

Heffernan C. Climate change and multiple emerging infectious diseases. Vet J 2018;234:43-7. doi: 10.1016/j.tvjl.2017.12.021.

Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018;360:739-42. https://doi.org/10.1126/science.aap7999.

Shelton JM, Fisher MC, Singer AC. Campaign-based citizen science for environmental mycology: the “science solstice” and “summer soil-stice” projects to assess drug resistance in air and soilborne Aspergillus fumigatus. bioRxiv 2020:2020.06.11.146241. https://doi.org/10.1101/2020.06.11.146241.

Hadfield J, Megill C, Bell SM, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 2018;34:4121-3. https://doi.org/10.1093/bioinformatics/bty407.

Argimón S, Abudahab K, Goater RJ, et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom 2016;2:e000093. https://doi.org/10.1099/mgen.0.000093.

Rudramurthy SM, Chakrabarti A, Paul RA, et al. Candida auris candidaemia in Indian ICUs: analysis of risk factors. J Antimicrob Chemother 2017;72:1794-801. doi: 10.1093/jac/dkx034.

van der Linden JW, Snelders E, Kampinga GA, et al. Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007–2009. Emerg Infect Dis 2011;17:1846. https://doi.org/10.3201/eid1710.110226.

Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK. Overcoming antifungal resistance. Drug Discov Today Technol 2014;11:65-71. doi: 10.1016/j.ddtec.2014.02.005.

Mathé L, Van Dijck P. Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet 2013;59:251-64. doi: 10.1007/ s00294-013-0400-3.

Lupetti A, Danesi R, Campa M, Del Tacca M, Kelly S. Molecular basis of resistance to azole antifungals. Trends Mol Med 2002 ;8:76-81. doi: 10.1016/s1471-4914(02)02280-3.

Perlin DS. Resistance to echinocandin-class antifungal drugs. Drug Resist Updat 2007;10:121-30. doi: 10.1016/j.drup.2007.04.002.

Ryder N, Leitner I. Synergistic interaction of terbinafine with triazoles or amphotericin B against Aspergillus species. Med Mycol 2001;39: 91-5. https://doi.org/10.1080/mmy.

Perlin DS. Current perspectives on echinocandin class drugs. Future Microbiol 2011;6:441-57. https://doi.org/10.2217/fmb.11.19.

Fisher MC, Alastruey-Izquierdo A, Berman J, et al. Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol 2022;20:557-71. https://doi.org/10.1038/s41579-022-00720-1.