Comprehensive analysis of the role of NLRC5 in gastrointestinal cancer: a systematic review

Main Article Content

Nur Rahadiani
Mohammad Ghozali
Dyah Laksmi Dewi

Abstract

Background
Gastrointestinal (GI) cancer is affecting millions of people globally, leading to high incidence and mortality rates and a heavy economic burden. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a family of cytosolic pattern recognition receptors that regulate host defense responses against microorganisms. Among these, NLR family CARD domain-containing 5 (NLRC5) is assumed to function as a regulator of proinflammatory responses to intracellular pathogens. NLRC5 has been known to regulate immune responses, although its association with cancer remains controversial. This systematic review aimed to explore the roles and functions of NLRC5 in GI cancers.


Methods
Three electronic databases, PubMed, Scopus, and ProQuest, were used for literature searching on March 18, 2024. From 921 articles found, 157 duplicates were removed, 671 were excluded based on title and abstract screening, and 84 were excluded based on full-text assessment, resulting in 19 articles included in this review.


Results
Elevated NLRC5 levels have been observed in tumor tissues compared to normal tissues across esophageal, gastric, colorectal, and liver cancers. NLRC5 is also associated with increased tumor cell proliferation, migration, and invasion. Cancer cell sensitivity to 5-fluorouracil chemotherapy was found to be negatively correlated with NLRC5 expression. NLRC5 expression levels and genetic variations were also associated with cancer susceptibility to chemotherapeutic drugs and cancer survival.


Conclusion
NLRC5 potentially exhibits diverse functions in GI cancers, acting as a biomarker for diagnosis, disease progression, prognostic assessment, and determining therapeutic implications. Further investigations are warranted to explore these mechanisms and their potentials for the development of effective treatment of GI cancers.

Article Details

How to Cite
Rahadiani, N., Ghozali, M., & Dewi, D. L. (2024). Comprehensive analysis of the role of NLRC5 in gastrointestinal cancer: a systematic review. Universa Medicina, 43(2). Retrieved from https://univmed.org/ejurnal/index.php/medicina/article/view/1545
Section
Review Article

References

Arnold M, Abnet CC, Neale RE, et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 2020;159:335-49.e15. doi: 10.1053/j.gastro.2020.02.068.

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209–49. doi: 10.3322/caac.21660.

Ferlay J, Ervik M, Lam F, et al. Global cancer observatory: cancer today. Indonesia fact sheet. Int J Cancer 2021. doi: 10.1002/ijc.33588.

Jeo WS, Subrata FH. The survival rate of colorectal cancer in dr. Cipto Mangunkusumo hospital. New Ropanasuri J Surg 2020;5:13–7. doi: 10.7454/nrjs.v5i2.1081.

Jasirwan COM, Hasan I, Sulaiman AS, et al. Risk factors of mortality in the patients with hepatocellular carcinoma: A multicenter study in Indonesia. Curr Probl Cancer 2020;44:100480. doi: 10.1016/j.currproblcancer.2019.05.003.

Malkani N, Rashid MU. Systemic diseases and gastrointestinal cancer risk. J Cancer Allied Spec 2023;9.473. doi: 10.37029/jcas.v9i2.473.

Yang XF, Pan K. Diagnosis and management of acute complications in patients with colon cancer: bleeding, obstruction, and perforation. Chin J Cancer Res 2014;26:331–40. doi: 10.3978/j.issn. 1000-9604.2014.06.11.

Chelbi ST, Dang AT, Guarda G. Emerging major histocompatibility complex class I-related functions of NLRC5. Adv Immunol 2017:133:89-119. doi: 10.1016/bs.ai.2016.11.003.

Cho SX, Vijayan S, Yoo J, et al. MHC class I transactivator NLRC5 in host immunity, cancer and beyond. Immunology 2021;162: 252–61. doi: 10.1111/imm.13235.

Cornel AM, Mimpen IL, Nierkens S. MHC class I downregulation in cancer: underlying mechanisms and potential targets for cancer immunotherapy. Cancers (Basel) 2020;12:1760. doi: 10.3390/cancers12071760.

Shukla A, Cloutier M, Appiya Santharam M, Ramanathan S, Ilangumaran S. The MHC class-I transactivator NLRC5: implications to cancer immunology and potential applications to cancer immunotherapy. Int J Mol Sci 2021;22: 1964. doi: 10.3390/ijms22041964.

Tang F, Xu Y, Zhao B. NLRC5: new cancer buster? Mol Biol Rep 2020;47:2265–77. doi: 10.1007/s11033-020-05253-5.

Vijayan S, Sidiq T, Yousuf S, Van Den Elsen PJ, Kobayashi KS. Class I transactivator, NLRC5: a central player in the MHC class I pathway and cancer immune surveillance. Immunogenetics 2019;71:273–82. doi: 10.1007/s00251-019-01106-z.

Yoshihama S, Vijayan S, Sidiq T, Kobayashi KS. NLRC5/CITA: a key player in cancer immune surveillance. Trends Cancer 2017;3:28–38. doi: 10.1016/j.trecan.2016.12.003.

Yoshihama S, Roszik J, Downs I, et al. NLRC5/MHC class I transactivator is a target for immune evasion in cancer. Proc Natl Acad Sci USA 2016;113:5999–6004. doi: 10.1073/pnas. 1602069113.

Yoshihama S, Cho SX, Yeung J, et al. NLRC5/CITA expression correlates with efficient response to checkpoint blockade immunotherapy. Sci Rep 2021;11:3258. doi: 10.1038/s41598-021-82729-9.

Li X, Guo F, Liu Y, et al. NLRC5 expression in tumors and its role as a negative prognostic indicator in stage III non-small-cell lung cancer patients. Oncol Lett 2015;10:1533–40. doi: 10.3892/ol.2015.3471.

Benkő S, Kovács EG, Hezel F, Kufer TA. NLRC5 functions beyond MHC I regulation—what do we know so far? Front Immunol 2017;8:150. doi: 10.3389/fimmu.2017.00150.

Wang Q, Ding H, He Y, et al. NLRC5 mediates cell proliferation, migration, and invasion by regulating the Wnt/β-catenin signalling pathway in clear cell renal cell carcinoma. Cancer Lett 2019;444:9–19. doi: 10.1016/j.canlet.2018.11. 024.

Zong Z, Song Y, Xue Y, et al. Knockdown of LncRNA SCAMP1 suppressed malignant biological behaviours of glioma cells via modulating miR‐499a‐5p/LMX1A/NLRC5 pathway. J Cell Mol Med 2019;23: 5048–62. doi: 10.1111/jcmm.14362.

Zhang L, Jiao C, Liu L, et al. NLRC5: A potential target for central nervous system disorders. Front Immunol 2021;12:704989. doi: 10.3389/ fimmu.2021.704989.

Zhan L, Zhang J, Wei B, Cao Y. Selective autophagy of NLRC5 promotes immune evasion of endometrial cancer. Autophagy 2022;18:942–3. doi: 10.1080/15548627.2022.2037119.

Fan Y, Dong Z, Shi Y, Sun S, Wei B, Zhan L. NLRC5 promotes cell migration and invasion by activating the PI3K/AKT signaling pathway in endometrial cancer. J Int Med Res 2020;48: 030006052092535. doi: 10.1177/ 0300060520925352.

Zhu SD, Zhang J, Liu XJ, et al. NLRC5 might promote endometrial cancer progression by inducing PD-L1 expression. Technol Cancer Res Treat 2022;21:153303382211127. doi: 10.1177/ 15330338221112742.

Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372: n71. doi:10.1136/bmj.n71.

Lu T, Xu R, Wang CH, et al. Identification of tumor antigens and immune subtypes of esophageal squamous cell carcinoma for mRNA vaccine development. Front Genet 2022;13: 853113. doi: 10.3389/fgene.2022.853113.

Hu X, Wang M, Cao L, et al. miR-4319 suppresses the growth of esophageal squamous cell carcinoma via targeting NLRC5. Curr Mol Pharmacol 2020;13:144–9. doi: 10.2174/ 1874467212666191119094636.

Dighe S. Identification of novel genetic susceptibility loci and prognostic indicators for esophageal adenocarcinoma. New York: State University of New York at Buffalo; 2021.

Liang S, Xiang T, Liu S, Xiang W. Inhibition of NLRC5 attenuates the malignant growth and enhances the sensitivity of gastric cancer cells to 5‑FU chemotherapy by blocking the carcinogenic effect of YY1. Exp Ther Med 2022;24:601. doi: 10.3892/etm.2022.11538.

Chonwerawong M, Ferrand J, Chaudhry HM, et al. Innate immune molecule NLRC5 protects mice from Helicobacter-induced formation of gastric lymphoid tissue. Gastroenterology 2020;159:169-82.e8. doi: 10.1053/j.gastro.2020. 03.009.

Li Y, Zhang M, Zheng X. High expression of NLRC5 is associated with prognosis of gastric cancer. Open Med (Wars) 2018;13:443–9. doi: 10.1515/med-2018-0066.

Du MQ. MALT lymphoma: a paradigm of NF-κB dysregulation. Semin Cancer Biol 2016;39:49–60. doi: 10.1016/j.semcancer.2016.07.003.

Zucca E, Bertoni F. The spectrum of MALT lymphoma at different sites: biological and therapeutic relevance. Blood 2016;127:2082–92. doi: 10.1182/blood-2015-12-624304.

Castaño-Rodríguez N, Kaakoush NO, Goh KL, Fock KM, Mitchell HM. The NOD-like receptor signalling pathway in Helicobacter pylori infection and related gastric cancer: a case-control study and gene expression analyses. PLoS One 2014;9:e98899. doi: 10.1371/journal.pone. 0098899.

Kang W, Tong JH, Chan AW, et al. Yin Yang 1 contributes to gastric carcinogenesis and its nuclear expression correlates with shorter survival in patients with early stage gastric adenocarcinoma. J Transl Med 2014;12:80. doi: 10.1186/1479-5876-12-80.

Ozcan M, Janikovits J, von Knebel Doeberitz M, Kloor M. Complex pattern of immune evasion in MSI colorectal cancer. Oncoimmunology 2018;7: e1445453. doi: 10.1080/2162402X.2018. 1445453.

Liu R, Truax AD, Chen L, et al. Expression profile of innate immune receptors, NLRs and AIM2, in human colorectal cancer: correlation with cancer stages and inflammasome components. Oncotarget. 2015;6:33456–69. doi: 10.18632/oncotarget.5587.

Grasso CS, Giannakis M, Wells DK, et al. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov 2018;8:730–49. doi: 10.1158/2159-8290.CD-17-1327.

Li H, Gong L, Cheng H, et al. Comprehensive molecular profiling of colorectal cancer with situs inversus totalis by next-generation sequencing. Front Oncol 2022;12:813253. doi: 10.3389/fonc. 2022.813253.

Catalano C, Da Silva Filho MI, Frank C, et al. Investigation of single and synergic effects of NLRC5 and PD-L1 variants on the risk of colorectal cancer. PLoS One 2018;13:e0192385. doi: 10.1371/journal.pone.0192385.

Huhn S, Da Silva Filho MI, Sanmuganantham T, et al. Coding variants in NOD-like receptors: an association study on risk and survival of colorectal cancer. PLoS One 2018;13:e0199350. doi: 10.1371/journal.pone.0199350.

Catalano C, Da Silva Filho MI, Jiraskova K, et al. Short article: influence of regulatory NLRC5 variants on colorectal cancer survival and 5-fluorouracil-based chemotherapy. Eur J Gastroenterol Hepatol 2018;30:838–42. doi: 10.1097/MEG.0000000000001154.

Siu HLE. Immune checkpoints PD-1/PD-L1 and natural killer cells in chemo-resistant colorectal cancer. Hong Kong: Chinese University of Hong Kong; 2019.

Peng YY, He YH, Chen C, et al. NLRC5 regulates cell proliferation, migration and invasion in hepatocellular carcinoma by targeting the Wnt/β-catenin signaling pathway. Cancer Lett 2016;376:10–21. doi: 10.1016/j.canlet.2016. 03.006.

He YH, Li MF, Zhang XY, Meng XM, Huang C, Li J. NLRC5 promotes cell proliferation via regulating the AKT/VEGF-A signaling pathway in hepatocellular carcinoma. Toxicology 2016; 359–60:47–57. doi: 10.1016/j.tox.2016. 06.012.

Zhang XW, Wu RD, Wang H, Hu F, Mao ZQ. NLRC5, a valuable marker for the diagnosis and prognostic assessment of hepatocellular carcinoma. Transl Cancer Res 2020;9:2609–17. doi: 10.21037/tcr.2020.02.81.

Nash G, Paidimuddala B, Zhang L. Structural aspects of the MHC expression control system. Biophys Chem 2022;284:106781. doi: 10.1016/j.bpc.2022.106781.

Jongsma MLM, Guarda G, Spaapen RM. The regulatory network behind MHC class I expression. Mol Immunol 2019;113:16–21. doi: 10.1016/j.molimm.2017.12.005.

Downs I, Vijayan S, Sidiq T, Kobayashi KS. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression. Biofactors. 2016;42:349–57. doi: 10.1002/biof.1285.

Garrido F, Aptsiauri N, Doorduijn EM, Garcia Lora AM, Van Hall T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol 2016;39: 44–51. doi: 10.1016/j.coi.2015.12.007.

Rodriguez GM, Bobbala D, Serrano D, et al. NLRC5 elicits antitumor immunity by enhancing processing and presentation of tumor antigens to CD8+ T lymphocytes. Oncoimmunology 2016;5: e1151593. doi: 10.1080/2162402X.2016. 1151593.

Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015;160:48–61. doi: 10.1016/ j.cell.2014.12.033.