Wound healing activity of topical Phaleria macrocarpa extract in type 2 diabetic rats
Main Article Content
Abstract
Background
Hyperglycemia interrupts wound healing, causing persistent and non-healing wounds. Phaleria macrocarpa extract (PME) has anti-diabetic, anti-inflammatory, antimicrobial, and antioxidant properties. This study aimed to assess P. macrocarpa activity on skin wound healing in diabetic rats.
Methods
An experimental study performed on 25 male Wistar rats. Ointments were prepared by adding vehicle (w/w) to PME at the desired concentration. Diabetes was induced by injecting rats with nicotinamide (NAD) 230 mg/kg and streptozotocin (STZ) 65 mg/kg. After hyperglycemia was confirmed, animals were randomly grouped into: i) normal rats, ii) diabetic rats; iii) diabetic rats + 2.5% ointment; iv) diabetic rats +5% ointment; and v) diabetic rats +10% ointment. Full-thickness skin wounds were induced on the dorsum and treatment was applied daily for 3 and 7 days, respectively. On days 4 and 8, wound closure was measured and animals were sacrificed for tissue samples. Wound healing was evaluated by measuring malondialdehyde (MDA) in tissue homogenates of the dermal wounds and analyzing histological changes by hematoxylin-eosin and Sirius-red staining.
Results
PME 10% ointment improved MDA levels and wound closure of inflammatory and proliferation phases. In inflammatory phase, 5% and 10% ointment reduced inflammation severity compared with diabetic rat group (p<0.05). In proliferation phase, PME 10% ointment group had a higher wound histological score (characterized by epidermal regeneration, fibroblast count, granulation tissue, and angiogenesis), and higher collagen bundle density compared with untreated groups (p<0.05).
Conclusions
Topical P. macrocarpa improves inflammatory and proliferation phases of excision wound healing in type 2 diabetes.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal allows the authors to hold the copyright without restrictions and allow the authors to retain publishing rights without restrictions.
How to Cite
References
Cho HN, Shaw JE, Karuranga S, et al. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018;138:271–81. DOI: 10.1016/j.diabres.2018.02.023.
Lo ZJ, Surendra NK, Saxena A, Car J. Clinical and economic burden of diabetic foot ulcers: a 5-year longitudinal multi-ethnic cohort study from the tropics. Int Wound J 2021;18:375–86. DOI: 10.1111/iwj.13540.
Brownrigg JRW, Griffin M, Hughes CO, et al. Influence of foot ulceration on cause-specific mortality in patients with diabetes mellitus. J Vasc Surg 2014;60:982-6.e3. doi: 10.1016/j.jvs.2014.04.052.
Walicka M, Raczyńska M, Marcinkowska K, et al. Amputations of lower limb in subjects with diabetes mellitus: reasons and 30-day mortality. J Diabetes Res 2021;2021:1–8. DOI: 10.1155/ 2021/8866126.
Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis. Ann Med 2017;49:106–16. DOI: 10.1080/07853890.2016. 1231932.
Zhang Y, Lazzarini PA, McPhail SM, van Netten JJ, Armstrong DG, Pacella RE. Global disability burdens of diabetes-related lower-extremity complications in 1990 and 2016. Diabetes Care 2020;43:964–74. DOI: 10.2337/dc19-1614.
Andrean D, Prasetyo S, Kristijarti A, Hudaya T. The extraction and activity test of bioactive compounds in Phaleria macrocarpa as antioxidants. Procedia Chem 2014;9:94–101. https://doi.org/10.1016/j.proche.2014.05.012.
Ahmad R, Khairul Nizam Mazlan M, Firdaus Abdul Aziz A, Mohd Gazzali A, Amir Rawa MS, Wahab HA. Phaleria macrocarpa (Scheff.) Boerl.: an updated review of pharmacological effects, toxicity studies, and separation techniques. Saudi Pharm J 2023;31:874–88. https://doi.org/10.1016/j.jsps.2023.04.006.
Sulistyoningrum E, Setiawati S. Phaleria macrocarpa reduces glomerular growth factor expression in alloxan-induced diabetic rats. Univ Med 2013;32:71-9. DOI: https://doi.org/ 10.18051/UnivMed.2013.v32.71-79.
Rizki M, Harahap U, Sitorus P. Phytochemical screening of Phaleria Macrocarpa (Scheff.) Boerl.) and antibacterial activity test of ethanol extract against Staphylococcus Aureus bacteria. Int J Sci 2023;4:422-7. DOI: https://doi.org/ 10.46729/ijstm.v4i2.781.
Widyapranata R. Ointment base for ethanolic seed extract of mahkota dewa (Phaleria macrocarpa) as an anti-bacterial against Staphylococcus aureus ATCC 25923. J Farmasi Indonesia 2011;8:7–10. DOI: https://doi.org/10.31001/jfi.v8i2.42.
Choy YB, Prausnitz MR. The rule of five for non-oral routes of drug delivery: ophthalmic, inhalation and transdermal. Pharm Res 2011; 943–8. DOI: 10.1007/s11095-010-0292-6.
Abood WN, Al-Henhena NA, Abood AN, et al. Wound-healing potential of the fruit extract of Phaleria macrocarpa. Bosn J Basic Med Sci 2015;15:25–30. https://doi.org/10.17305%2Fbjbms.2015.39.
Özay Y, Güzel S, Yumrutaş Ö, et al. Wound healing effect of kaempferol in diabetic and nondiabetic rats. J Surg Res 2019;233:284–96. DOI: 10.1016/j.jss.2018.08.009.
Edmonds M, Manu C, Vas P. The current burden of diabetic foot disease. J Clin Orthop Trauma 2021;17:88–93. DOI: 10.1016/j.jcot.2021.01.017.
Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle) 2015;4:560–82. DOI: 10.1089/ wound.2015.0635.
Ullah A, Khan A, Khan I. Diabetes mellitus and oxidative stress—a concise review. Saudi Pharm J 2016;24:547–53. DOI: 10.1016/j.jsps.2015. 03.013
Deng L, Du C, Song P, et al. The role of oxidative stress and antioxidants in diabetic wound healing. Oxid Med Cell Longev 2021;2021:8852759. https://doi.org/10.1155/2021/8852759.
Komesu MC, Tanga MB, Buttros KR, Nakao C. Effects of acute diabetes on rat cutaneous wound healing. Pathophysiology 2011;11:63–7. https://doi.org/10.1016/j.pathophys.2004.02.002.
Charan J, Kantharia N. How to calculate sample size in animal studies? J Pharmacol Pharmacother 2013;4:303–6. DOI: 10.4103/0976-500X.119726.
Ghasemi A, Jeddi S. Streptozotocin as a tool for induction of rat models of diabetes: a practical guide. EXCLI J 2023;22:274–94. DOI: 10.17179/ excli2022-5720.
Chen L, Mirza R, Kwon Y, DiPietro LA, Koh TJ. The murine excisional wound model: Contraction revisited. Wound Repair Regen 2015;23:874–7. https://doi.org/10.1111/wrr.12338.
Hidayat R, Wulandari P. Euthanasia procedure of animal model in biomedical research. J Biomed Translational Res 2021;5:540–4. https://doi.org/ 10.32539/bsm.v5i6.310.
Saleh MA, Shabaan AA, May M, Ali YM. Topical application of indigo-plant leaves extract enhances healing of skin lesion in an excision wound model in rats. J Appl Biomed 2022;20:124-9. DOI: 10.32725/jab.2022.014.
Alamoudi AA, Alharbi AS, Abdel-Naim AB, et al. Novel nanoconjugate of apamin and ceftriaxone for management of diabetic wounds. Life 2022;12:1096–120. DOI: 10.3390/ life12071096.
Tsai HC, Chang GRL, Fan HC, et al. A mini-pig model for evaluating the efficacy of autologous platelet patches on induced acute full thickness wound healing. BMC Vet Res 2019;15:1–13. DOI: 10.1186/s12917-019-1932-7.
Karabulut S, Özyaman S, Altintaş A, Keskin I. Histological effect of traditional rose ointment application in the excisional wound model. Acta Pharmac Sci 2022;60:39–47. DOI: 10.23893/ 1307-2080.APS.6003.
Yang F, Bai X, Dai X, Li Y.. The biological processes during wound healing. Regen Med 2021;16:373–90. DOI: 10.2217/rme-2020-0066.
de Moura F, Ferreira B, Deconte S, et al. Wound healing activity of the hydroethanolic extract of the leaves of Maytenus ilicifolia Mart. Ex Reis. J Tradit Complement Med 2021;11:446–56. DOI: 10.1016/j.jtcme.2021.03.003
Melguizo‐Rodríguez L, de Luna‐Bertos E, Ramos‐Torrecillas J, Illescas-Montesa R, Costela-Ruiz VJ, García-Martínez O. Potential effects of phenolic compounds that can be found in olive oil on wound healing. Foods 2021; 10:1642. DOI: 10.3390/foods10071642.
Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J 2017;14:89-96. DOI: 10.1111/iwj.12557.
Petruk G, Del Giudice R, Rigano MM, Monti DM. Antioxidants from plants protect against skin photoaging. Oxid Med Cell Longev 2018;2018 1454936. doi: 10.1155/2018/1454936.
Kwon KR, Alam MB, Park JH, Kim TH, Lee SH. Attenuation of UVB-induced photo-aging by polyphenolic-rich Spatholobus suberectus stem extract via modulation of MAPK/AP-1/MMPs signaling in human keratinocytes. Nutrients 2019;11:1341–55. DOI: 10.3390/nu11061341.
Hendra R, Ahmad S, Oskoueian E, Sukari A, Shukor MY. Antioxidant, anti-inflammatory and cytotoxicity of Phaleria macrocarpa (Boerl.) Scheff fruit. BMC Complement Altern Med 2011;11:110. DOI: 10.1186/1472-6882-11-110
Lay MM, Karsani SA, Banisalam B, Mohajer S, Abd Malek SN. Antioxidants, phytochemicals, and cytotoxicity studies on Phaleria macrocarpa (Scheff.) Boerl seeds. Biomed Res Int 2014;2014:1–13. DOI: 10.1155/2014/410184.
Avishai E, Yeghiazaryan K, Golubnitshaja O. Impaired wound healing: facts and hypotheses for multi-professional considerations in predictive, preventive and personalised medicine. EPMA J 2017;8:23–33. DOI 10.1007/s13167-017-0081-y.
Tandrasasmita OM, Sutanto AM, Arifin PF, Tjandrawinata RR. Anti-inflammatory, antiangiogenic, and apoptosis-inducing activity of DLBS1442, a bioactive fraction of Phaleria macrocarpa, in a RL95-2 cell line as a molecular model of endometriosis. Int J Womens Health 2015;7:161-9. doi: 10.2147/IJWH.S74552.
Kusmardi K, Situmorang NY, Zuraidah E, Estuningtyas A, Tedjo A. The effect of mahkota dewa (Phaleria macrocarpa) leaf extract on the mucin 1 expression in mice colonic epithelial cells induced by dextran sodium sulfate (DSS). Pharmacogn J 2021;13:1509–15. DOI:10.5530/ pj.2021.13.192.
Yuliana Y, Tandrasasmita OM, Tjandrawinata RR. Anti-inflammatory effect of predimenol, a bioactive extract from Phaleria macrocarpa, through the suppression of NF-κB and COX-2. Recent Adv Inflamm Allergy Drug Discov 2021; 15:99–107. DOI: 10.2174/2772270816666220119122259.
Mahmood A, Tiwari AK, Şahın K, Ömer K, Shakir A. Triterpenoid saponin-rich fraction of Centella asiatica decreases IL-1β and NF-κB, and augments tissue regeneration and excision wound repair. Turk J Biol 2016;40:399–409. DOI: 10.3906/biy-1507-63.
Lindley L, Stojadinovic O, Pastar I, Tomic-Canic M. Biology and biomarkers for wound healing. Plast Reconstr Surg 2017;138:18S-28S. DOI: 10.1097/PRS.0000000000002682.
Cialdai F, Risaliti C, Monici M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front Bioeng Biotechnol 2022;10:958381. DOI:10.3389/fbioe. 2022.958381.
Eming SA, Martin P. Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med 2014;6:265sr6. DOI: 10.1126/scitranslmed.3009337.
Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes: cellular mechanisms of wound repair. Open Biol 2020;10:200223. DOI: 10.1098/rsob.200223.