Galectin-3 and galectin-1 interactions in breast cancer therapy
Main Article Content
Abstract
Galectins, a family of β-galactoside-binding proteins, play critical roles in tumor progression, angiogenesis, and immune evasion, making them significant therapeutic targets in cancer treatment. By binding β-galactoside containing glycoconjugates, galectins modulate immune responses, apoptosis, and tumor development. The increasing recognition of their oncogenic roles has led to the development of carbohydrate- and peptide-based inhibitors that competitively bind to the carbohydrate recognition domain (CRD), disrupting galectin-mediated immune evasion, T-cell apoptosis, and angiogenesis. Given their intricate functions in the tumor microenvironment, a comprehensive evaluation of galectin inhibitors is warranted. This review synthesizes recent advancements in galectin-targeted therapies, including their mechanisms of action, efficacy in preclinical models, and potential synergy with chemotherapeutic agents and monoclonal antibodies. Despite promising developments, challenges remain in optimizing treatment regimens, overcoming resistance mechanisms, and identifying predictive biomarkers for patient stratification. Patient stratification, based on molecular or genetic profiles, is essential for enhancing therapeutic efficacy and ensuring personalized treatment approaches. A systematic literature search (2014–2024) was conducted using Google Scholar, ProQuest, Science Direct, and Scopus databases, with key terms including galectin inhibitors, cancer therapy, tumor microenvironment, immune evasion, and targeted therapy. This review highlights the role of galectin-1 and galectin-3 in breast cancer therapy, emphasizing their impact on tumor progression, immune modulation, and resistance to conventional treatments. Further translational research is necessary to refine clinical applications, optimize combination strategies, and establish biomarkers that enhance the integration of galectin inhibitors into existing treatment paradigms.
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal allows the authors to hold the copyright without restrictions and allow the authors to retain publishing rights without restrictions.
How to Cite
References
1. Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl). 2021; 134:783-91. doi: 10.1097/CM9.0000000000001474.
2. Bashar MDA, Begam N. Breast cancer surpasses lung cancer as the most commonly diagnosed cancer worldwide. Indian J Cancer 2022;59:438-9. Doi: 10.4103/ijc.IJC_83_21.
3. Morgan E, Arnold M, Gini A, et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 2023;72:338-44. Doi: 10.1136/gutjnl-2022-327736.
4. Adebayo AS, Agbaje K, Adesina SK, Olajubutu O. Colorectal cancer: disease process, current treatment options, and future perspectives. Pharmaceutics 2023;15:2620. Doi: 10.3390/pharmaceutics15112620
5. Nathan CA, Khandelwal AR, Wolf GT, et al. TP53 mutations in head and neck cancer. Mol Carcinog 2022;61:385-91. Doi: 10.1002/mc.23385.
6. Aitchison A, Hakkaart C, Whitehead M, et al. CDH1 gene mutation in early-onset, colorectal signet-ring cell carcinoma. Pathol Res Pract 2020; 216:152912. Doi: 10.1016/j.prp.2020.152912.
7. Parsons R. Discovery of the PTEN tumor suppressor and its connection to the PI3K and AKT oncogenes. Cold Spring Harb Perspect Med 2020;10:a036129. Doi: 10.1101/cshperspect. a036129.
8. Rashidi I, Kaveh P, Kianizade F, et al. Comparison of benign and malignant breast disease-risk factors and frequencies in samples referred to pathology laboratory of Ahwaz University of Medical Sciences from 2006 to 2017. Int J Life Sci Pharma Res 2019;9:6-12. DOI: 10.22376/ijpbs/lpr.2019.9.4. L6-12.
9. Singh PG, Basalingappa KM, Gopenath T, Navya Raj MP, Prathibha Rajashekara S, Sushma BV. Awareness of breast cancer and current perspectives: an overview. Int J Pharm Biol Sci 2021;12:b54-9. DOI: 10.1016/j.ijpharm.2021.120602.
10. Boutas I, Potiris A, Makrakis E, Messaropoulos P, Papaioannou GK, Kalantaridou SN. The expression of Galectin-3 in breast cancer and its association with metastatic disease: a systematic review of the literature. Mol Biol Rep 2021;48: 807-15. Doi: 10.1007/s11033-020-06122-x.
11. Hara A, Niwa M, Noguchi K, et al. Galectin-3 as a next-generation biomarker for detecting early stage of various diseases. Biomolecules 2020;10:389. Doi: 10.3390/biom10030389.
12. Di Gregoli K, Somerville M, Bianco R, et al. Galectin-3 identifies a subset of macrophages with a potential beneficial role in atherosclerosis. Arterioscler Thromb Vasc Biol 2020;40:1491-509. DOI: 10.1161/ATVBAHA.120.314252.
13. Ahmed R, Anam K, Ahmed H. Development of galectin-3 targeting drugs for therapeutic applications in various diseases. Int J Mol Sci 2023;24:8116. doi: 10.3390/ijms24098116.
14. Wang SF, Hung YH, Tsao CH, et al. Galectin-3 facilitates cell-to-cell HIV-1 transmission by altering the composition of membrane lipid rafts in CD4 T cells. Glycobiology 2022;32:760-77. DOI: 10.1093/glycob/cwac040.
15. Capone E, Iacobelli S, Sala G. Role of galectin 3 binding protein in cancer progression: a potential novel therapeutic target. J Transl Med 2021;19: 405. DOI: 10.1186/s12967-021-03085-w.
16. Miller MC, Zheng Y, Suylen D, et al. Targeting the CRD F‐face of human galectin‐3 and allosterically modulating glycan binding by angiostatic PTX008 and a structurally optimized derivative. Chem Med Chem 2021;16:713-23. DOI: 10.1002/cmdc.202000742.
17. Ernur D. Comparison of preoperative and postoperative serum galectin-3 levels in patients newly diagnosed with non-metastatic breast cancer. Cancer 2024;18:22. DOI: 10.14744/ejma.2024.69077.
18. Guo Y, Shen R, Yu L, et al. Roles of galectin 3 in the tumor microenvironment and tumor metabolism. Oncol Rep 2020;44:1799-809. DOI: 10.3892/or.2020.7777.
19. Suthahar N, Meijers WC, Silljé HHW, Ho JE, Liu FT, de Boer RA. Galectin-3 activation and inhibition in heart failure and cardiovascular disease: an update. Theranostics 2018;8:593-609. doi: 10.7150/thno.22196.
20. Setayesh T, Colquhoun SD, Wan YJ. Overexpression of galectin-1 and galectin-3 in hepatocellular carcinoma. Liver Res 2020;4:173-9. DOI: 10.1016/j.livres.2020.11.001.
21. Pang Y. Investigating galectin-3-ligand interaction on cancer cell behaviours [dissertation]. Liverpool (UK): University of Liverpool; 2024.
22. Sasaki T, Oyama M, Kubota M, et al. Galectin-2 agglutinates Helicobacter pylori via lipopolysaccharide containing H type I under weakly acidic conditions. Int J Mol Sci 2024;25: 8725. DOI: 10.3390/ijms25168725.
23. Wu SC, Ho AD, Kamili NA, et al.. Full-length galectin-3 is required for high affinity microbial interactions and antimicrobial activity. Front Microbiol 2021;12:731026. DOI: 10.3389/fmicb. 2021.731026.
24. Goud NS, Bhattacharya A. Human galectin-1 in multiple cancers: a privileged molecular target in oncology. Mini Rev Med Chem 2021;21:2169-86. DOI: 10.2174/1389557521666210217093815.
25. Kim SJ, Chun KH. Non-classical role of Galectin-3 in cancer progression: translocation to nucleus by carbohydrate-recognition independent manner. BMB Reports 2020;53:173. DOI: 10.5483/ BMBRep.2020.53.4.020.
26. Li L, Wang J, Li Z, et al. Diagnostic value of serum lncRNA HOTAIR combined with Galectin-3 in benign and papillary thyroid carcinoma. Cancer Manag Res 2021;19:6517-25. DOI: 10.2147/CMAR.S312784.
27. Pokharel S, Sharma UC, Attwood K, Mansoor S. Clinical significance of galectin-3 expression in squamous cell carcinoma of lung. J Cancer Sci Clin Ther 2022;6:322-7. DOI: 10.26502/jcsct. 5079169.
28. Chang JW, Seo ST, Im MA, et al. Claudin-1 mediates progression by regulating EMT through AMPK/TGF-β signaling in head and neck squamous cell carcinoma. Transl Res 2022;247: 58-78. DOI: 10.1016/j.trsl.2022.04.003.
29. Srejovic IM, Lukic ML. Galectin-3 in T cell-mediated immunopathology and autoimmunity. Immunol Lett 2021;233:57-67. DOI: 10.1016/ j.imlet.2021.03.009.
30. Berbís MÁ, André S, Cañada FJ, et al. Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner. Biochem Biophys Res Commun 2014;443:126-31. doi: 10.1016/j.bbrc.2013.11.063.
31. Dimitrijevic SM, Stojanovic B, Radosavljevic I, et al. Galectin-3's complex interactions in pancreatic ductal adenocarcinoma: from cellular signaling to therapeutic potential. Biomolecules 2023;13:1500. DOI; 10.3390/biom13101500.
32. Setayesh T, Colquhoun SD, Wan YJ. Overexpression of Galectin-1 and Galectin-3 in hepatocellular carcinoma. Liver Res 2020;4:173-9. DOI; 10.1016/j.livres.2020.11.001.
33. Wan Y, Adair K, Herrmann A, et al. C1GalT1 expression reciprocally controls tumour cell-cell and tumour-macrophage interactions mediated by galectin-3 and MGL, doubly impacting cancer development and progression. Cell Death Dis 2023;14:547. DOI: 10.1038/s41419-023-06082-7.
34. Thijssen VL. Galectins in endothelial cell biology and angiogenesis: the basics. Biomolecules 2021; 11:1386. DOI; 10.3390/biom11091386.
35. Hoffmann M, Hayes MR, Pietruszka J, Elling L. Synthesis of the Thomsen-Friedenreich-antigen (TF-antigen) and binding of Galectin-3 to TF-antigen presenting neo-glycoproteins. Glycoconj J 2020;37:457-70. DOI; 10.1007/s10719-020-09926-y.
36. Grazier JJ, Sylvester PW. Role of galectins in metastatic breast cancer. Exon Publications 2022;6:115-30. DOI; https://doi.org/10.36255/ exon-publications- breast-cancer-galectins.
37. Abourehab MA, Baisakhiya S, Aggarwal A, et al. Chondroitin sulfate-based composites: a tour d'horizon of their biomedical applications. J Mater Chem B 2022;10:9125-78. DOI; 10.1039/D2TB01514E.
38. Moure MJ, Gimeno A, Delgado S, et al. Selective 13C‐labels on repeating glycan oligomers to reveal protein binding epitopes through NMR: polylactosamine binding to galectins. Angew Chem Int Ed Eng 2021;60:18777-82. DOI; 10.1002/anie.202106056.
39. Vicente MM, Alves I, Fernandes Â, et al. Mannosylated glycans impair normal T-cell development by reprogramming commitment and repertoire diversity. Cell Mol Immunol 2023;20: 955-68. DOI; 10.1038/s41423-023-01052-7.
40. Sendid B, Lecointe K, Collot M, et al. Dissection of the anti-Candida albicans mannan immune response using synthetic oligomannosides reveals unique properties of β-1,2 mannotriose protective epitopes. Sci Rep 2021;11:10825. DOI: 10.1038/ s41598-021-90402-4.
41. Ghanbari-Movahed M, Kaceli T, Mondal A, Farzaei MH, Bishayee A. Recent advances in improved anticancer efficacies of camptothecin nano-formulations: A systematic review. Biomedicines 2021;9:480. DOI: 10.3390/ biomedicines9050480.
42. Ballari MS, Porta EO, Zalazar EA, et al. Lipophilic modification of Salirasib modulates the antiproliferative and antimigratory activity. Bioorg Med Chem 20237;92:117417. DOI: 10.26434/chemrxiv-2021-gkff1-v2.
43. Pang KL, Foong LC, Abd Ghafar N, et al. Transcriptomic analysis of the anticancer effects of annatto tocotrienol, delta-tocotrienol and gamma-tocotrienol on chondrosarcoma cells. Nutrients 2022;14:4277. DOI; 10.3390/ nu14204277.
44. Aldabaan N, Sultana TA, Sylvester PW. γ-Tocotrienol inhibition of androgen receptor (AR) expression and activation in triple negative breast cancer (TNBC) MBA-MB-231 and MDA-MB-453 cells is associated with a reduction in epithelial-to-mesenchymal transition (EMT). Cancer Res 2022;82(12_Supplement):711. DOI: 10.1158/1538-7445.AM2022-711.
45. Funkhouser AT, Strigenz AM, Blair BB. KIT mutations correlate with higher galectin levels and brain metastasis in breast and non-small cell lung cancer. Cancers (Basel) 2022;14:2781. doi: 10.3390/cancers14112781.
46. Iwamoto S, Mori Y, Yamashita T, et al. Trophoblast cell surface antigen-2 phosphorylation triggered by binding of galectin-3 drives metastasis through down-regulation of E-cadherin. J Biol Chem 2023;299:104971. DOI: 10.1016/j.jbc.2023.104971.
47. Chen Z, Dong D, Zhu Y, Pang N, Ding J. The role of Tim‐3/Galectin‐9 pathway in T‐cell function and prognosis of patients with human papilloma virus‐associated cervical carcinoma. FASEB J 2021;35:e21401. DOI: 10.1096/fj.202000528RR.
48. Vrbata D, Filipová M, Tavares MR, et al. Glycopolymers decorated with 3-O-substituted thiodigalactosides as potent multivalent inhibitors of galectin-3. J Med Chem 2022;65:3866-78. DOI: 10.1021/acs.jmedchem.1c01625.
49. Mechahougui H, Gutmans J, Colarusso G, Gouasmi R, Friedlaender A. Advances in personalized oncology. Cancers 2024;16:2862. DOI: 10.3390/cancers16162862.
50. Markalunas EG, Arnold DH, Funkhouser AT, et al. Correlation analysis of genetic mutations and galectin levels in breast cancer patients. Genes 2024;15:818. DOI: 10.3390/genes15060818.