Machine learning models for predicting 48-hour mortality in acute intracerebral hemorrhagic stroke
Main Article Content
Abstract
BACKGROUND
Identifying patients with intracerebral hemorrhagic (ICH) at high risk of mortality is crucial for timely intervention. Machine learning (ML) offers novel methodologies for precise predictive models for ICH. Therefore, the aim of this study was to develop an ML-based predictive model for 48-hour mortality in patients with acute hemorrhagic stroke.
METHODS
A cross-sectional study was conducted using secondary data from 657 patients diagnosed with acute ICH. Demographic, clinical, laboratory, and radiological variables were extracted from medical records. Data preprocessing included cleaning, normalization, and class balancing using the Synthetic Minority Oversampling Technique (SMOTE). Three supervised algorithms—Random Forest, Decision Tree, and Gaussian Naïve Bayes—were developed and evaluated using stratified 5-fold cross-validation. Model performance was assessed using accuracy, sensitivity, specificity, precision, recall, F1-score, and AUC.
RESULTS
Random Forest achieved the best overall performance for predicting 48-hour mortality, with an accuracy of 84.77%, F1-score of 84.63%, and AUC of 80.51, outperforming Decision Tree (AUC 61.12) and Gaussian Naïve Bayes (AUC 82.94). Random Forest most accurately identified >48-hour survival, with high sensitivity (93.5%) and PPV (92.9%), while Naïve Bayes provided the most reliable positive classification for this category (PPV 99.0; specificity 94.2%). For ≤24-hour mortality, Naïve Bayes showed the best detection performance (sensitivity 85.4%; NPV 98.7%).
CONCLUSIONS
Machine learning, particularly the Random Forest algorithm, enables reliable prediction of 48-hour mortality in patients with acute ICH using basic clinical and radiological data available at admission. The model offers practical potential for early risk stratification in emergency and critical care settings.
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal allows the authors to hold the copyright without restrictions and allow the authors to retain publishing rights without restrictions.
How to Cite
References
1. Lee TH. Intracerebral hemorrhage. Cerebrovasc Dis Extra 2025;15:1-8. doi: 10.1159/000542566.
2. Puy L, Parry-Jones AR, Sandset EC, Dowlatshahi D, Ziai W, Cordonnier C. Intracerebral haemorrhage. Nat Rev Dis Primers 2023;9:14. doi: 10.1038/s41572-023-00424-7.
3. Parry-Jones AR, Krishnamurthi R, Ziai WC, et al. World Stroke Organization (WSO): Global intracerebral hemorrhage factsheet 2025. Int J Stroke 2025;20:145-50. doi: 10.1177/17474930241307876.
4. Magid-Bernstein J, Girard R, Polster S, et al. Cerebral hemorrhage: pathophysiology, treatment, and future directions. Circ Res 2022;130:1204-29. doi: 10.1161/CIRCRESAHA.121.319949.
5. Hillal A, Ullberg T, Ramgren B, Wasselius J. Computed tomography in acute intracerebral hemorrhage: neuroimaging predictors of hematoma expansion and outcome. Insights Imaging 2022;13:180. doi: 10.1186/s13244-022-01309-1.
6. Mutchmore A, Lamontagne F, Chasse M, Moore L, Mayette M. Automated APACHE II and SOFA score calculation using real-world electronic medical record data in a single center. J Clin Monit Comput 2023;37:1023-233. doi: 10.1007/s10877-023-01010-8.
7. Ray SK, Sarkar MSR, Ahmed KMA, Ahmed KMA, et al. Predicting 30-day outcomes in primary intracerebral hemorrhage using the intracerebral hemorrhage score: a study in Bangladesh. Cureus 2024;16:e73227. doi: 10.7759/cureus.73227.
8. Bautista W, Adelson PD, Bicher N, Themistocleous M, Tsivgoulis G, Chang JJ. Secondary mechanisms of injury and viable pathophysiological targets in intracerebral hemorrhage. Ther Adv Neurol Disord 2021;14:17562864211049208. doi: 10.1177/17562864211049208.
9. Li Z, You M, Long C, et al. Hematoma expansion in intracerebral hemorrhage: an update on prediction and treatment. Front Neurol 2020;11:702. doi: 10.3389/fneur.2020.00702.
10. Wan Y, Holste KG, Hua Y, Keep RF, Xi G. Brain edema formation and therapy after intracerebral hemorrhage. Neurobiol Dis 2023;176:105948. doi: 10.1016/j.nbd.2022.105948.
11. Fakiri MO, Uyttenboogaart M, Houben R, van Oostenbrugge RJ, Staals J, Luijckx GJ. Reliability of the intracerebral hemorrhage score for predicting outcome in patients with intracerebral hemorrhage using oral anticoagulants. Eur J Neurol 2020;27:2006-13. doi: 10.1111/ene.14336.
12. Gürbüz H, Topçu H. Estimating the outcomes of intracerebral haemorrhage with intracerebral haemorrhage score and acute physiology and chronic health evaluation-II score: a multicentre study. Turk J Anaesthesiol Reanim 2022;50:410-5. doi: 10.5152/TJAR.2022.21422.
13. Witsch J, Siegerink B, Nolte CH, et al. Prognostication after intracerebral hemorrhage: a review. Neurol Res Pract 2021;3:22. doi: 10.1186/s42466-021-00120-5.
14. Dhillon SK, Ganggayah MD, Sinnadurai S, Lio P, Taib NA. Theory and practice of integrating machine learning and conventional statistics in medical data analysis. Diagnostics (Basel) 2022;12:2526. doi: 10.3390/diagnostics12102526.
15. Abujaber AA, Albalkhi I, Imam Y, et al. Machine learning-based prediction of 90-day prognosis and in-hospital mortality in hemorrhagic stroke patients. Sci Rep 2025;15:16242. doi: 10.1038/s41598-025-90944-x.
16. Wei H, Huang X, Zhang Y, et al. Explainable machine learning for predicting neurological outcome in hemorrhagic and ischemic stroke patients in critical care. Front Neurol 2024;15:1385013. doi: 10.3389/fneur.2024.1385013.
17. Cao Y, Deng H, Liu S, et al. Development and validation of a machine learning-based risk prediction model for stroke-associated pneumonia in older adult hemorrhagic stroke. Front Neurol 2025;16:1591570. doi: 10.3389/fneur.2025.1591570.
18. Kurtz P, Peres IT, Soares M, Salluh JIF, Bozza FA. Hospital length of stay and 30-day mortality prediction in stroke: a machine learning analysis of 17,000 ICU admissions in Brazil. Neurocrit Care 2022;37(Suppl 2):313-21. doi: 10.1007/s12028-022-01486-3.
19. Abujaber AA, Albalkhi I, Imam Y, Nashwan A, Akhtar N, Alkhawaldeh IM. Machine learning-based prognostication of mortality in stroke patients. Heliyon 2024;10:e28869. doi: 10.1016/j.heliyon.2024.e28869.
20. Wang W, Otieno JA, Eriksson M, Wolfe CD, Curcin V, Bray BD. Developing and externally validating a machine learning risk prediction model for 30-day mortality after stroke using national stroke registers in the UK and Sweden. BMJ Open 2023;13:e069811. doi: 10.1136/bmjopen-2022-069811.
21. Schwartz L, Anteby R, Klang E, Soffer S. Stroke mortality prediction using machine learning: systematic review. J Neurol Sci 2023;444:120529. doi: 10.1016/j.jns.2022.120529.
22. Wang W, Kiik M, Peek N, et al. A systematic review of machine learning models for predicting outcomes of stroke with structured data. PLoS One 2020;15:e0234722. doi: 10.1371/journal.pone.0234722.
23. Cummins JA, Gerber BS, Fukunaga MI, Henninger N, Kiefe CI, Liu F. In-hospital mortality prediction among intensive care unit patients with acute ischemic stroke: a machine learning approach. Health Data Sci 2025;5:0179. doi: 10.34133/hds.0179.
24. Khosravi B, Weston AD, Nugen F, et al. Demystifying statistics and machine learning in analysis of structured tabular data. J Arthroplasty 2023;38:1943-7. doi: 10.1016/j.arth.2023.08.045.
25. Li J. Area under the ROC curve has the most consistent evaluation for binary classification. PLoS One 2024;19:e0316019. doi: 10.1371/journal.pone.0316019.
26. Fernandez-Lozano C, Hervella P, Mato-Abad V, et al. Random forest-based prediction of stroke outcome. Sci Rep 2021;11:10071. doi: 10.1038/s41598-021-89434-7.
27. Peng SY, Chuang YC, Kang TW, Tseng KH. Random forest can predict 30-day mortality of spontaneous intracerebral hemorrhage with remarkable discrimination. Eur J Neurol 2010;17:945-50. doi: 10.1111/j.1468-1331.2010.02955.x.
28. Abujaber A, Yaseen S, Imam Y, Nashwan A, Akhtar N. Machine learning-based prediction of one-year mortality in ischemic stroke patients. Oxf Open Neurosci 2024;3:kvae011. doi: 10.1093/oons/kvae011.
29. Matsumoto K, Nohara Y, Soejima H, Yonehara T, Nakashima N, Kamouchi M. Stroke prognostic scores and data-driven prediction of clinical outcomes after acute ischemic stroke. Stroke 2020;51:1477-83. doi: 10.1161/STROKEAHA.119.027300.
30. Nie X, Cai Y, Liu J, et al. Mortality prediction in cerebral hemorrhage patients using machine learning algorithms in intensive care units. Front Neurol 2021;11:610531. doi: 10.3389/fneur.2020.610531.