Effects of low-dose filtered kretek cigarette smoke on bronchial smooth muscle in male Sprague-Dawley rats

Main Article Content

David Tjahyadi
Edy Parwanto
Sisca Sisca
Endrico Xavierees
Hosea Jaya Edy
Reza Aditya Digambiro
Ashaolu Victoria Oladimeji
Joey Joshua Vidova Tjahyadi
Laurentia Gabrielle

Abstract

Background
Kretek cigarettes contain less nicotine and tar than conventional cigarettes. Exposure to cigarette smoke occurs mainly in the respiratory tract, resulting in histometric changes. The aim of this study was to evaluate the effect of filtered kretek cigarette smoke on bronchial histometric measurements in male Sprague-Dawley rats.


Methods
An experimental laboratory study was conducted involving 18 male Sprague-Dawley rats, aged 2-3 months, ranging from 150 to 250 grams in body weight. They were randomized into group 1 (controls) and experimental groups 2 and 3. Group 2 was exposed to filtered cigarette smoke at a dose of 1 stick/day and group 3 to 2 sticks/day. Treatment time for all groups was 30 days. Observation of bronchial histometric measurements of the lumen include, length, width, area, and perimeter. In addition, the bronchial mucosal and smooth muscle layers were also measured. The one way-ANOVA test was used to analyze the data.


Results
The mean area and mean perimeter of the bronchial lumen of the rats were significantly greater in group 1 than in groups 2 and 3 (p=0.000). The mean bronchial smooth muscle area of the rats in group 1 was smaller than the mean in group 2, which was in turn smaller than the mean in group 3 (p=0.000). Apparently the rats in the treatment groups had undergone bronchoconstriction.


Conclusion
Exposure to filtered kretek cigarette smoke at a dose of 1 stick/day as well as 2 sticks/day for 30 days caused bronchial mucosal hyperplasia and bronchoconstriction in male rats.

Article Details

How to Cite
Tjahyadi, D., Parwanto, E., Sisca, S., Xavierees, E. ., Jaya Edy, H. ., Digambiro, R. A., Oladimeji, A. V. ., Tjahyadi, J. J. V. ., & Gabrielle, L. (2023). Effects of low-dose filtered kretek cigarette smoke on bronchial smooth muscle in male Sprague-Dawley rats . Universa Medicina, 42(3), 263–275. https://doi.org/10.18051/UnivMed.2023.v42.263-275
Section
Original Articles

References

Roemer E, Dempsey R, Schorp MK. Toxicological assessment of kretek cigarettes Part 1: Background, assessment approach, and summary of findings. Regul Toxicol Pharmacol 2014;70 Suppl 1:S2-14. doi: 10.1016/j.yrtph.2014.11.015.

Cohen JE, Amalia B, Luo W, McWirther KJ, Masanga BC, Pankow JF Eugenol, menthol and other flavour chemicals in kreteks and ‘white’ cigarettes purchased in Indonesia. Tob Control 2023;0:1–4. doi:10.1136/tc-2022-057827.

World Health Organization. WHO report on the global tobacco epidemic 2021: addressing new and emerging products. Geneva: World Health Organization; 2021.

Braun M, Marsidi LL, Klingelhöfer D, et al. Kretek cigarettes and particulate matter emissions—an aerosol spectrometric study on typical Indonesian brands flavored with cloves. Nicotine Tob Res 2022;24:778–84. https://doi.org/10.1093/ntr/ntab209.

Nuryunarsih D, Lewis S, Langley T. Health risks of kretek cigarettes: a systematic review. Nicotine Tob Res 2021;23:1274-82. doi: 10.1093/ntr/ntab016.

Lin J, Taggart M, Borthwick L, et al. Acute cigarette smoke or extract exposure rapidly activates TRPA1-mediated calcium influx in primary human airway smooth muscle cells. Sci Rep 2021;11:9643. doi: 10.1038/s41598-021-89051-4.

Amorós-Pérez A, Cano-Casanova L, Román-Martínez MC, Lillo-Ródenas MA. Comparison of particulate matter emission and soluble matter collected from combustion cigarettes and heated tobacco products using a setup designed to simulate puffing regimes. Chem Eng J Adv 2021;8: 100144. https://doi.org/10.1016/j.ceja.2021.100144.

Kuiper N, Coats EM, Crawford TN, et al. Trends in manufacturer-reported nicotine yields in cigarettes sold in the United States, 2013–2016. Prev Chronic Dis 2020;17:200205. DOI: http://dx.doi.org/10.5888/pcd17.200205.

Berthet A, Butty A, Rossier J, Sadowski IJ, Froidevaux P. 210Po and 210Pb content in the smoke of heated tobacco products versus conventional cigarette smoking. Sci Rep 2022;12:10314. doi: 10.1038/s41598-022-14200-2.

Paul AR, Khan F, Jain A, Saha SC. Deposition of smoke particles in human airways with realistic waveform. Atmosphere 2021;12:912. https://doi.org/10.3390/atmos12070912.

Lee YG, Lee PH, Choi SM, An MH, Jang AS. Effects of air pollutants on airway diseases. Int J Environ Res Public Health 2021;18:9905. doi: 10.3390/ijerph18189905..

Carvalho JL, Miranda M, Fialho AK, et al. Oral feeding with probiotic Lactobacillus rhamnosus attenuates cigarette smoke-induced COPD in C57Bl/6 mice: relevance to inflammatory markers in human bronchial epithelial cells. PLoS One 2020;15:e0225560. doi: 10.1371/journal.pone. 0225560.

Fieldès M, Ahmed E, Bourguignon C, et al. Modélisation de l’épithélium bronchique dans la bronchopneumopathie chronique obstructive par les cellules souches pluripotentes induites humaines [Modelling the bronchial epithelium in chronic obstructive pulmonary disease using human induced pluripotential stem cells]. Rev Mal Respir 2020;37:197-200. French. doi: 10.1016/j.rmr.2020.02.003.

Tulen CBM, Duistermaat E, Cremers JWJM, et al. Smoking-associated exposure of human primary bronchial epithelial cells to aldehydes: impact on molecular mechanisms controlling mitochondrial content and function. Cells 2022;11:3481. doi: 10.3390/cells11213481.32.

Chauhan NS, Sood D, Takkar P, Dhadwal DS, Kapila R. Quantitative assessment of airway and parenchymal components of chronic obstructive pulmonary disease using thin-section helical computed tomography. Pol J Radiol 2019;84:e54-e60. doi: 10.5114/pjr.2019.82737.

Park K, Jung Y, Son T, et al. Optimal diameter reduction ratio of acinar airways in human lungs. PLoS One 2019;14:e0204191. doi: 10.1371/journal.pone.0204191.

Huang Z, Sun S, Lee M, et al. Single-cell analysis of somatic mutations in human bronchial epithelial cells in relation to aging and smoking. Nat Genet 2022;54:492-8. doi: 10.1038/s41588-022-01035-w.

Morgan DI, Jokinen MP, Price HC, Gwinn WM, Palmer SM, Flakeet GP. Bronchial and bronchiolar fibrosis in rats exposed to 2,3-pentanedione vapors: implications for bronchiolitis obliterans in humans. Toxicol Pathol 2012;40:448-65. DOI: 10.1177/0192623311431946.

González-Luis GE, Westering-Kroon EV, Villamor-Martinez E, et al. Tobacco smoking during pregnancy is associated with increased risk of moderate/severe bronchopulmonary dysplasia: a systematic review and meta-analysis. Front Pediatr 2020;8:160. doi: 10.3389/fped.2020.00160.

Aboul-Fotouh GI, Zickri MB, Metwally HG, Ibrahim IR, Kamar SS, Sakr W. Therapeutic effect of adipose derived stem cells versus atorvastatin on amiodarone induced lung injury in male rat. Int J Stem Cells 2015;8:170-80. doi: 10.15283/ijsc.2015.8.2.170.

Lin X, Yang C, Huang L, et al. Upregulation of TRPM7 augments cell proliferation and interleukin-8 release in airway smooth muscle cells of rats exposed to cigarette smoke. Mol Med Rep 2016;13:4995-5004. doi: 10.3892/mmr.2016.5161

Wang Q, Cui Y, Wu X, Wang J. Evodiamine protects against airway remodelling and inflammation in asthmatic rats by modulating the HMGB1/NF-êB/TLR-4 signalling pathway. Pharm Biol 2021;59:192-9. doi: 10.1080/13880209.2020. 1871374.

Ferreira SRD, Pessoa RF, Figueiredo IAD, et al. Functional and morphologic dysfunctions in the airways of rats submitted to an experimental model of obesity-exacerbated asthma. Sci Rep 2022;12:9540. doi: 10.1038/s41598-022-13551-0.

Hiemstra PS, Grootaers G, van der Does AM, Krul CAM, Kooter IM. Human lung epithelial cell cultures for analysis of inhaled toxicants: Lessons learned and future directions. Toxicol In Vitro 2018;47:137–46. doi: 10.1016/j.tiv.2017.11.005.

Hiemstra PS, McCray PB, Bals R. The innate immune function of airway epithelial cells in inflammatory lung disease. Eur Respir J 2015;45:1150–62. doi: 10.1183/09031936.00141514.

He W, Zhang W, Cheng C, et al. Expression characteristics of polymeric immunoglobulin receptor in Bactrian camel (Camelus bactrianus) lungs. PLoS One 2022;17:e0264815. doi: 10.1371/journal.pone.0264815.

Liu N, Guan Y, Zhou C, Wang Y, Ma Z, Yao S. Pulmonary and systemic toxicity in a rat model of pulmonary alveolar proteinosis induced by indium-tin oxide nanoparticles. Int J Nanomedicine 2022;17:713-31. doi: 10.2147/IJN.S338955.

Desdiani D, Rengganis I, Djauzi S, et al. Fibropreventive and antifibrotic effects of Uncaria gambir on rats with pulmonary fibrosis. Evid Based Complement Alternat Med 2022; ;2022:6721958. doi: 10.1155/2022/6721958.

Malaviya R, Abramova EV, Rancourt RC, et al. Progressive lung injury, inflammation, and fibrosis in rats following inhalation of sulfur mustard. Toxicol Sci 2020;178:358-74. doi: 10.1093/toxsci/kfaa150.

Attafi IM, Bakheet SA, Ahmad SF, et al. Lead nitrate induces inflammation and apoptosis in rat lungs through the activation of NF-êB and AhR signaling pathways. Environ Sci Pollut Res Int 2022;29:64959–70. doi: 10.1007/s11356-022-19980-8. Erratum in: Environ Sci Pollut Res Int. 2022 May 21.

Guan Y, Liu N, Yu Y, et al. Pathological comparison of rat pulmonary models induced by silica nanoparticles and indium-tin oxide nanoparticles. Int J Nanomedicine 2022;17:4277-92. https://doi.org/10.2147/IJN.S380259.

Boon M, Verleden SE, Bosch B, et al. Morphometric analysis of explant lungs in cystic fibrosis. Am J Respir Crit Care Med 2016;193:516–26. DOI: 10.1164/rccm.201507-1281OC.

Pulvers K, Tracy L, Novotny TE, et al. Switching people who smoke to unfiltered cigarettes: perceptions, addiction and behavioural effects in a cross-over randomised controlled trial. Tob Control 2023;32:520-3. doi: 10.1136/tobaccocontrol-2021-056815.

Hidayah N, Rahayu O, Solfaine R, Utomo YS. Perbandingan paparan asap rokok konvensional dan rokok herbal pada mencit (Mus musculus) terhadap perbandingan gambaran histologi paru. J Vitek Bid Ked Hewan 2020;10:25-32. DOI https://doi.org/10.30742/jv.v10i0.55.

Tjahyadi D, Parwanto E. Applications of biometrics, histometrics and cytometrics in deep learning. Bali Med J 2022;11:520-2. DOI: 10.15562/bmj.v11i1.3265

Drian A, Yee A, Kim N, et al. Histometric measurement of CD117 and PGP9.5 immunopositive staining in excised vestibular specimens from patients with neuroproliferative vestibulodynia. J Sex Med 2023;20Suppl 1:qdad060.127. https://doi.org/10.1093/jsxmed/qdad060.127.

Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. Malays J Med Sci. 2017;24:101–5. https://doi.org/10.21315/mjms2017.24.5.11.

Schramke H, Roemer E, Dempsey R, et al. Toxicological assessment of kretek cigarettes. Part 7: The impact of ingredients added to kretek cigarettes on inhalation toxicity. Reg Toxicol Pharmacol 2014;70 Suppl 1:S81-9. doi: 10.1016/j.yrtph.2014.09.014.

Chou HC, Li YT, Chen CM. Human mesenchymal stem cells attenuate experimental bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia. Am J Transl Res 2016;8:342-53.

Emma R, Caruso M, Campagna D, Pulvirenti R, Li Volti G. The impact of tobacco cigarettes, vaping products and tobacco heating products on oxidative stress. Antioxidants 2022;11:1829. doi: 10.3390/antiox11091829.

Wu T, Xu K, Liu C, Li Y, Li M. Interleukin-37 ameliorates cigarette smoke-induced lung inflammation in mice. Biomed Pharmacother 2022;155:113684. https://doi.org/10.1016/j.biopha.2022.113684.

Zhang W, Zhang Y, Zhu Q. Cigarette smoke extract-mediated FABP4 upregulation suppresses viability and induces apoptosis, inflammation and oxidative stress of bronchial epithelial cells by activating p38 MAPK/MK2 signaling pathway. J Inflamm (Lond) 2022; 19:1-11. doi: 10.1186/s12950-022-00304-z.

Murray LA, Dunmore R, Camelo, et al. Acute cigarette smoke exposure activates apoptotic and inflammatory programs but a second stimulus is required to induce epithelial to mesenchymal transition in COPD epithelium. Respir Res 2017;18:82.. https://doi.org/10.1186/s12931-017-0565-2.

Wang KCW, Donovan GM, Saglani S, et al. Growth of the airway smooth muscle layer from late gestation to childhood is mediated initially by hypertrophy and subsequently hyperplasia. Respirology 2022;27:493-500. DOI: 10.1111/resp.14240.

Manevski M, Devadoss D, Long C, et al. Increased expression of LASI lncRNA regulates the cigarette smoke and COPD associated airway inflammation and mucous cell hyperplasia. Front Immunol 2022;13:803362. doi: 10.3389/fimmu.2022.803362.

Han JM, Kim MH, Choi LY, Kim G, Yang WM. Exploring the potential effects and mechanisms of Asarum sieboldii radix essential oil for treatment of asthma. Pharmaceutics 2022;14:558. https://doi.org/10.3390/pharmaceutics 14030558.

Zhang X, Zhang X, Huang W, Ge X. The role of heat shock proteins in the regulation of fibrotic diseases. Biomed Pharmacother 2021;135:111067. https://doi.org/10.1016/j.biopha.2020.111067.

Hesse C, Beneke V, Konzok S, et al. Nintedanib modulates type III collagen turnover in viable precision-cut lung slices from bleomycin-treated rats and patients with pulmonary fibrosis. Respir Res 2022;23:201. https://doi.org/10.1186/s12931-022-02116-4.

Li X, Feng C, Peng S. Epigenetics alternation in lung fibrosis and lung cancer. Front Cell Dev Biol 2022;10:1060201. doi: 10.3389/fcell.2022.1060201.

Kurniawan SV, Louisa M, Zaini J, et al. Acute exacerbation of idiopathic pulmonary fibrosis model in the rats using bleomycin and lipopolysaccharides. J Adv Vet Anim Res 2023;10:196–204. http://doi.org/10.5455/javar.2023.j669.

Ågren L, Elfsmark L, Akfur C, Jonasson S. High concentrations of ammonia induced cytotoxicity and bronchoconstriction in a precision-cut lung slices rat model. Toxicol Lett. 2021;349:51-60. doi: 10.1016/j.toxlet.2021.06.001.

Cho SH, Jeong SH, Shin J, Park S, Jang SI. Short-term smoking increases the risk of insulin resistance. Sci Rep 2022;12:3550. https://doi.org/10.1038/s41598-022-07626-1.

Proskocil BJ, Calco GN, Nie Z. Insulin acutely increases agonist-induced airway smooth muscle contraction in humans and rats. Am J Physiol Lung Cell Mol Physiol 2021;320: L545–56. doi:10.1152/ajplung.00232.2020.

Arabzadeh E, Mirdar S, Moradiani H. Nigella sativa supplementation attenuates exercise-induced bronchoconstriction in the maturing rat: a histometric and histologic study. Comp Clin Pathol 2016;25:1–5. DOI 10.1007/s00580-015-2128-6.