Secretome hypoxia-mesenchymal stem cells decrease tumor necrosis factor-α and interleukin-18 in kidney of type 2 diabetes mellitus model rats

Main Article Content

Risky Chandra Satria Irawan
Agung Putra
Trisnadi Setyo
Shabrina Syifa Ghaisani
Nurul Hidayah

Abstract

Background
Type 2 diabetes mellitus (T2DM) is a chronic disease that affects millions of people worldwide and associated with an increased risk of kidney damage caused by prolonged inflammation. Secretome hypoxia- mesenchymal stem cells (SH-MSCs) have been investigated as a potential therapy for kidney inflammation in T2DM, due to their immunomodulatory properties and ability to promote tissue repair. In this study, we investigated the effects of SH-MSCs on tumor necrosis α (TNF-á) and interleukin-18 (IL-18) in the kidney of the T2DM model rats.


Methods
A post-test-only control group involving 24 male Wistar rats. The rats were treated with a high-fat diet (HFD) for 4 weeks and streptozotocin-nicotinamide with sucrose solution for 5 days to induce T2DM animal models. Rats were randomly divided into four groups: healthy, control, and groups treated with SH-MSCs T1 and T2, with doses of 250 µL and 500 µL, respectively. TNF-α and IL-18 gene expression was measured by real time polymerase chain reaction (RT-PCR). One Way ANOVA and post-hoc LSD tests were used to determine the significant difference against all groups based on their quantitative measurement.


Results
Administration of the SH-MSCs at a dose of 500µL (T2) was able to significantly reduce TNF-α and IL-18 gene expression when compared to control (T2DM rat without treatment) (p<0.05), but not significantly when compared to healthy and SH-MSC at a dose of 250µL (T1) group (p>0.05).


Conclusion
This study demonstrated that the SH-MSCs decreased the levels of proinflammatory cytokines TNF-α and IL-18 gene expression in the kidney of T2DM model rats.

Article Details

How to Cite
Irawan, R. C. S., Putra, A. ., Setyo, T. ., Ghaisani, S. S., & Hidayah, N. (2023). Secretome hypoxia-mesenchymal stem cells decrease tumor necrosis factor-α and interleukin-18 in kidney of type 2 diabetes mellitus model rats. Universa Medicina, 42(3), 320–328. https://doi.org/10.18051/UnivMed.2023.v42.320-328
Section
Original Articles

References

Abo El- Nasr NME, Saleh DO, Mahmoud SS, et al. Olmesartan attenuates type 2 diabetes-associated liver injury: cross-talk of AGE/RAGE/JNK, STAT3/SCOS3 and RAS signaling pathways. Eur J Pharmacol 2020;874:173010. doi:10.1016/j.ejphar.2020.173010.

Adel Abdel-Moneim, Sanaa M. Abd El-Twab, Nabil A, Salma A. El Kazafy. Effect of antidiabetic therapy on TNF-α, IL-18, IL-23 and IL-35 levels in T2DM patients with coincidental Helicobacter pylori infection. J Taibah Univ Sci 2020;14:1377-85. doi:10.1080/16583655.2020.1824669.

Sharma I, Liao Y, Zheng X, Kanwar YS. New pandemic: obesity and associated nephropathy. Front Med (Lausanne) 2021;8:673556. doi:10.3389/fmed.2021.673556.

Zaharieva E, Kamenov Z, Velikova T, Tsakova A, El-Darawish Y, Okamura H. Interleukin-18 serum level is elevated in type 2 diabetes and latent autoimmune diabetes. Endocr Connect 2018;7:179-85. doi:10.1530/EC-17-0273.

Sawaf H, Thomas G, Taliercio JJ, et al. Therapeutic advances in diabetic nephropathy. J Clin Med 2022;11 : 378. doi: 10.3390/jcm11020378.

Boi R, Ebefors K, Henricsson M, Borén J, Nyström J. Modified lipid metabolism and cytosolic phospholipase A2 activation in mesangial cells under pro-inflammatory conditions. Sci Rep 2022;12:7322. doi:10.1038/s41598-022-10907-4.

Dias I, Pinheiro D, Ribeiro Silva K, et al. Secretome effect of adipose tissue-derived stem cells cultured two-dimensionally and three-dimensionally in mice with streptozocin induced type 1 diabetes. Curr Res Pharmacol Drug Discov 2021;2:100069. doi:10.1016/j.crphar.2021.100069.

Nguyen LT, Hoang DM, Nguyen KT, et al. Type 2 diabetes mellitus duration and obesity alter the efficacy of autologously transplanted bone marrow-derived mesenchymal stem/stromal cells. Stem Cells Transl Med 2021;10:1266-78. doi:10.1002/sctm.20-0506.

Sávio-Silva C, Beyerstedt S, Soinski-Sousa PE, et al. Mesenchymal stem cell therapy for diabetic kidney disease: a review of the studies using syngeneic, autologous, allogeneic, and xenogeneic cells. Stem Cells Int 2020;2020: 8833725. doi:10.1155/2020/8833725.

Song C, Wang S, Fu Z, et al. IGFBP5 promotes diabetic kidney disease progression by enhancing PFKFB3-mediated endothelial glycolysis. Cell Death Dis 2022;13:340. doi:10.1038/s41419-022-04803-y.

World Health Organization. Obesity and overweight. Geneva : World Health Organization;2021.

Yu M, Ma L, Yuan Y, et al. Cranial suture regeneration mitigates skull and neurocognitive defects in craniosynostosis. Cell 2021;184:243-56.e18. doi:10.1016/j.cell.2020.11.037.

Su Y, Xu C, Cheng W, Zhao Y, Sui L, Zhao Y. Pretreated mesenchymal stem cells and their secretome: enhanced immunotherapeutic strategies. Int J Mol Sci 2023;24: 1277. doi:10.3390/ijms24021277.

Raggi F, Pelassa S, Pierobon D, et al. Regulation of human macrophage M1-M2 polarization balance by hypoxia and the triggering receptor expressed on myeloid cells-1. Front Immunol 2017;8:1-18. doi:10.3389/fimmu.2017.01097.

Lin W, Li HY, Yang Q, et al. Administration of mesenchymal stem cells in diabetic kidney disease: a systematic review and meta-analysis. Stem Cell Res Ther 2021;12:43. doi:10.1186/s13287-020-02108-5.

Chadid T, Morris A, Surowiec A, et al. Reversible secretome and signaling defects in diabetic mesenchymal stem cells from peripheral arterial disease patients. J Vasc Surg 2018;68:137S-51S.e2. doi:10.1016/j.jvs.2018.05.223.

Putra A, Ridwan FB, Putridewi AI, et al. The role of tnf-α induced mscs on suppressive inflammation by increasing tgf-β and il-10. Open Access Maced J Med Sci 2018;6:1779-83. doi:10.3889/oamjms.2018.404.

Ozkan S, Isildar B, Ercin M, et al. Therapeutic potential of conditioned medium obtained from deferoxamine preconditioned umbilical cord mesenchymal stem cells on diabetic nephropathy model. Stem Cell Res Ther 2022;13:438. doi:10.1186/s13287-022-03121.6

Sutrisman IP, Antari AD, Putra A, Irawan RCS, Handoyo FE. Secretome hypoxia-mesenchymal stem cells regulate IL-10 concentrations in STZ-induced type 1 diabetes rats. Int J Cell Biomed Sci 2022;1:56-64.

Holthaus M, Santhakumar N, Wahlers T, Paunel-Görgülü A. The secretome of preconditioned mesenchymal stem cells drives polarization and reprogramming of M2a macrophages toward an IL-10-producing phenotype. Int J Mol Sci 2022;23: 4104. doi:10.3390/ijms23084104.

Putra A, Pertiwi D, Milla MN, et al. Hypoxia-preconditioned MSCs have superior effect in ameliorating renal function on acute renal failure animal model. Open Access Maced J Med Sci 2019;7:305-10. doi:10.3889/oamjms.2019.049.

Muhar AM, Putra A, Warli SM, Munir D. Hypoxia-mesenchymal stem cells inhibit intra-peritoneal adhesions formation by upregulation of the il-10 expression. Open Access Maced J Med Sci 2019;7:3937-43. doi:10.3889/oamjms.2019.713.

Donate-Correa J, Ferri CM, Sánchez-Quintana F, et al. Inflammatory cytokines in diabetic kidney disease: pathophysiologic and therapeutic implications. Front Med (Lausanne) 2021;7: 628289. doi:10.3389/fmed.2020.628289.

Mühl H, Dhingra S, Booz GW, et al. IL-10/STAT3/SOCS3 axis is involved in the anti-inflammatory effect of benznidazole. Front Immunol 2019;10:1267. doi:10.3389/fimmu.2019.01267

Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol 2010;10:170-81. doi:10.1038/nri2711.

Astari L, Cahyono H, Widjajanto E. Correlation of interleukin-10, superoxide dismutase (SOD), and malondialdehyde (MDA) levels with HbA1c in pediatric type 1 diabetes mellitus. J Trop Life Sci 2017;7:286-92. doi:10.11594/jtls.07.03.15.

Kotsis V, Martinez F, Trakatelli C, Redon J. Impact of obesity in kidney diseases. Nutrients 2021;13: 4482. doi:10.3390/nu13124482.