Comparative analysis of KnockOut serum replacement and fetal bovine serum for in vitro culture of human dermal fibroblasts

Main Article Content

Nur Ilham Risma Hidayati
Indra Kusuma
Eko Poerwanto

Abstract

BACKGROUND
Human dermal fibroblast (HDF) cultures can be used as a regenerative agent for wound healing. Fetal bovine serum (FBS) as a culture supplement is derived from animals, therefore not being constant in composition, causes variations in research results, thus requiring a substitute such as KnockOut serum replacement (KOSR). This study evaluated the defined KOSR as FBS substitute for HDF culture by measuring the relative expression of basic fibroblast growth factor (bFGF) and keratinocyte growth factor (KGF) messenger RNA (mRNA), HDF cell proliferation, and HDF migration.


METHODS
Human dermal fibroblast culture was divided into 2 intervention groups receiving KOSR 5% and KOSR 10%, respectively, and a control group receiving FBS 10%. Reverse transcription polymerase chain reaction (RT-PCR) was used for bFGF and KGF mRNA relative expression at the fifth passage (P5). Cell counting kit-8 (CCK-8) reagent was used for the HDF cell proliferation assay at P5 and the scratch assay was used for HDF cell migration at P6. Data were analyzed using dependent t-test, One-way ANOVA, or Kruskal-Wallis test.


RESULTS
There were no significant differences in bFGF and KGF mRNA relative expression and HDF migration velocity between the intervention and control groups (p>0.05 and p>0.05, respectively). The doubling time of the KOSR 5% group showed no significant difference (p>0.05), but KOSR 10% and FBS 10% showed significant differences between treatment days 2-6 and treatment days 6-10 (p<0.05).


CONCLUSIONS
The KOSR 10% was comparable to FBS 10% in supporting bFGF and KGF mRNA relative expression, HDF cell proliferation, and HDF cell migration in HDF culture.

Article Details

How to Cite
Hidayati, N. I. R., Kusuma, I. ., & Poerwanto, E. . (2023). Comparative analysis of KnockOut serum replacement and fetal bovine serum for in vitro culture of human dermal fibroblasts. Universa Medicina, 42(3), 283–293. https://doi.org/10.18051/UnivMed.2023.v42.283-293
Section
Original Articles

References

Kurniawati Y, Adi S, Achadiyani, Erlangga D, Putri T. Kultur primer fibroblas: penelitian pendahuluan. MKA 2015; 38: 34–40. DOI: https://doi.org/10.22338/mka.v38.i1.p33-40.2015.

Santi. Peranan sel punca dalam penyembuhan luka. Cermin Dunia Kedokteran 2018;45: 374–379. DOI: https://dx.doi.org/10.55175/cdk.v45i4.681.

Churiyah, Kusuma I, Kusumastuti SA, Hadi RS,, Wibowo AE, Fabiola FK. Isolasi sel punca pluripoten dengan penanda CD105+ dan SSEA3+ dari sel fibroblas kulit asal jaringan preputium. Jurnal Ilmu Kefarmasian Indonesia 2015;14: 233–239. DOI: http://jifi.farmasi.univpancasila.ac.id/index.php/jifi/article/view/36.

Zhang S, Liu Z, Su G, Wu H. Comparative analysis of KnockOut™ serum with fetal bovine serum for the in vitro long-term culture of human limbal epithelial cells. J Ophthalmol 2016;2016:7304812. doi: 10.1155/2016/7304812.

Arslan HO, Keles E, Rostami B, et al. An overview of adding ROCK and KSR with trehalose to a low glycerol tris-based semen extender. Black Sea J Agric 2023;6:211–4. DOI: https://doi.org/10.47115/bsagriculture.1155604.

Sakurai M, Suzuki C, Yoshioka K. Effect of KnockOut serum replacement supplementation to culture medium on porcine blastocyst development and piglet production. Theriogenology 2014;83:1–8. DOI: http://dx.doi.org/10.1016/j.theriogenology.2014.11.003.

Aoshima K, Baba A, Makino Y, Okada Y. Establishment of alternative culture method for spermatogonial stem cells using knockout serum replacement. PLoS One 2013;8:e77715. doi: 10.1371/journal.pone.0077715.

Reda A, Albalushi H, Montalvo SC, et al. KnockOut serum replacement and melatonin effects on germ cell differentiation in murine testicular explant cultures. Ann Biomed Eng 2017; 45:1783-94. doi: 10.1007/s10439-017-1847-z.

Damayanti F, Wathon S. Peningkatan performa pertumbuhan kultur sel fibroblas dan aplikasinya untuk perbaikan jaringan yang rusak. J BioTrends 2017;8:32–9.

Veltmann M, Hollborn M, Reichenbach A, Wiedemann P, Kohen L, Bringmann A. Osmotic induction of angiogenic growth factor expression in human retinal pigment epithelial cells. PLoS One 2016;11:e0147312. DOI: https://doi.org/10.1371/journal.pone.0147312.

Lämmermann I, Terlecki-Zaniewicz L, Weinmüllner R, et al. Blocking negative effects of senescence in human skin fibroblasts with a plant extract. NPJ Aging Mech Dis. 2018;4:4. doi: 10.1038/s41514-018-0023-5.

Bhushan B, Gopinath P. Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles. J Mater Chem B 2015; 3: 4843–52. DOI: https://doi.org/10.1039/C5TB00572H.

Kusuma I, Hadi RS. Geraniin supplementation increases human keratinocyte proliferation in serum-free culture. Univ Med 2013; 32: 3–10. DOI: https://doi.org/10.18051/UnivMed.2013.v32. 3%20-%2010.

Suarez-Arnedo A, Figueroa FT, Clavijo C, Arbeláez P, Cruz JC, Muñoz-Camargo C. An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLoS One 2020;15:e0232565. doi: 10.1371/journal.pone. 0232565.

Rosada A, Mujayanto R, Poetri AR. Ekstrak daun salam dalam meningkatkan ekspresi fibroblast growth factor pada ulkus traumatik rongga mulut. Odonto Dental J 2020;7: 90. DOI: http://dx.doi.org/10.30659/odj.7.2.90-96.

Onuh JO, Qiu H. Serum response factor-cofactor interactions and their implications in disease. FEBS J 2021;288:3120-34. doi: 10.1111/febs.15544.

Febrianti N, Tahir T, Yusuf S. Study literature peran epidermal growth factor dalam proses penyembuhan luka. J Keperawatan Muhammadiyah 2019;4:7–13. DOI: http://dx.doi.org/10.30651/jkm.v4i1.1852.

Zonderland J, Rezzola S, Moroni L. Actomyosin and the MRTF-SRF pathway downregulate FGFR1 in mesenchymal stromal cells. Commun Biol 2020;3:576. doi: 10.1038/s42003-020-01309-1.

Lee DY, Lee SY, Yun SH, et al. Review of the current research on fetal bovine serum and the development of cultured meat. Food Sci Anim Resour 2022;42:775-99. doi: 10.5851/kosfa.2022. e46.

Bártolo I, Reis RL, Marques AP, Cerqueira MT. Keratinocyte growth factor-based strategies for wound re-epithelialization. Tissue Eng Part B Rev 2022;28:665-76. doi: 10.1089/ten.TEB.2021.0030.

Sumitomo A, Siriwach R, Thumkeo D, et al. LPA induces keratinocyte differentiation and promotes skin barrier function through the LPAR1/LPAR5-RHO-ROCK-SRF axis. J Invest Dermatol 2019;139:1010-22. doi: 10.1016/j.jid.2018. 10.034.

Waryastuty H, Irianingsih SH, Wasito R. Deteksi kontaminasi bovine viral diarrhea virus pada fetal bovine serum yang tersedia secara komersial. J Veteran 2021;22:229–36. DOI: https://doi.org/10.19087/jveteriner.2021.22.2.229.

Rohmah MK. Pengaruh jenis substrat dan serum terhadap aktivitas penempelan, proliferasi dan diferensiasi kultur sel myoblast C2C12. LenteraBio Berkala Ilmiah Biologi 2021;10:134–9. DOI: https://doi.org/10.26740/lenterabio.v10n2.p134-139.

Cheng F, Eriksson JE. Intermediate filaments and the regulation of cell motility during regeneration and wound healing. Cold Spring Harb Perspect Biol 2017;9:a022046. DOI: https://doi.org/10.1101%2Fcshperspect.a022046.

Arief H, Widodo MA. Peranan stres oksidatif pada proses penyembuhan luka. J Ilmiah Kedokteran Wijaya Kusuma 2018;5: 22–29. DOI: http://dx.doi.org/10.30742/jikw.v5i2.338.

Jiang Y, Zhu WQ, Zhu XC, et al. Cryopreservation of calf testicular tissues with knockout serum replacement. Cryobiology 2020;92:255-7. doi: 10.1016/j.cryobiol.2020.01.010.

Dinsmore CJ, Soriano P. Differential regulation of cranial and cardiac neural crest by serum response factor and its cofactors. Elife 2022;11:e75106. doi: 10.7554/eLife.75106.

Gualdrini F, Esnault C, Horswell S, Stewart A, Matthews N, Treisman R. SRF co-factors control the balance between cell proliferation and contractility. Mol Cell 2016;64:1048–61. DOI: http://dx.doi.org/10.1016/j.molcel.2016.10.016.

Elliyanti A. Peran C-Fos sebagai agen proliferasi dan pro-apoptosis sebagai strategi pengembangan pengobatan kanker. Majalah Kedokteran Andalas 2016;39:73–8. DOI: http://dx.doi.org/10.22338/mka.v39.i2.p73-78.2016.

Chen N, Chen CC, Lau LF. Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin a6b1 and cell surface heparan sulfate proteoglycans. J Biol Chem 2000;275:24953–61. DOI: 10.1074/jbc.M003040200.

Costa A, Gozzellino L, Urbini M, et al. SRF rearrangements in soft tissue tumors with muscle differentiation. Biomolecules 2022;12:1678. DOI: https://doi.org/10.3390/biom12111678.

Schulte SRC, Scott B, Barrick SK, Stump WT, Blackwell T, Greenberg MJ. Single molecule mechanics and kinetics of cardiac myosin interacting with regulated thin filaments. bioRxiv [Preprint] 2023:2023.01.09.522880. doi: 10.1101/2023.01.09.522880.

Khaitlina SY. Tropomyosin as a regulator of actin dynamics. Int Rev Cell Mol Biol 2015;318:255-91. doi: 10.1016/bs.ircmb.2015.06.002.

Jensen MH, Morris EJ, Gallant CM, Morgan KG, Weitz DA, Moore JR. Mechanism of calponin stabilization of cross-linked actin networks. Biophys J 2014;106:793-800. doi: 10.1016/j.bpj.2013.12.042.

Esnault C, Stewart A, Gualdrini F, et al. Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev 2014;28:943-58. doi: 10.1101/gad.239327.114.