Correlation of angle kappa with biometry and higher-order aberrations of cataract patients at Prof. Ngoerah Hospital Ophthalmology Clinic

Main Article Content

Siska Siska
I Gusti Ayu Ratna Suryaningrum
Saphira Evani


Advancements in ophthalmic surgery now hinge on intricate interplays among ocular parameters. Angle kappa, measuring deviation between visual and pupillary axes, is crucial, especially in refractive procedures with multifocal intraocular lens implants. The research aimed to correlate angle kappa with biometry and higher-order aberrations (HOA) to enhance surgical outcomes among adult cataract patients at Prof. Ngoerah Hospital Ophthalmology Clinic, Denpasar, Bali.

This cross-sectional study included 29 male and female cataract patients aged 18-80 years, without prior treatment. All patients had a basic examination that included testing of visual acuity using Snellen chart, autorefractometer, measurement of ocular pressure using non-contact tonometry, and slit-lamp examination for cataract grading. Patients who met the inclusion criteria were then examined for biometry (axial length, spherical equivalent, white-to-white distance, anterior chamber depth) using Nidek AL Scan and for angle kappa and HOA using OPD scan III.

Data from 50 eyes of 29 subjects (15 females and 14 males) were analyzed. The mean age of the subjects was 60.6 ± 12.5 years. Age and spherical equivalent had positive correlation with angle kappa (r =0.104, r=0.213), but the correlation was not statistically significant. In this study, interestingly angle kappa was not significantly correlated with HOA, AXL, WTW, and ACD (r = -0.050, r = -0.192, r = -0.104, r = -0.195, p >0.05).

In conclusion, angle kappa may increase with age and spherical equivalent. Further study with larger sample size is required.

Article Details

How to Cite
Siska, S., Suryaningrum, I. G. A. R. ., & Evani, S. . (2023). Correlation of angle kappa with biometry and higher-order aberrations of cataract patients at Prof. Ngoerah Hospital Ophthalmology Clinic. Universa Medicina, 42(3), 314–319.
Original Articles


Fu Y, Kou J, Chen D, et al. Influence of angle kappa and angle alpha on visual quality after implantation of multifocal intraocular lenses. J Cataract Refract Surg 2019;45:1258-64. doi:10.1016/j.jcrs.2019.04.003.

Yeo JH, Moon NJ, Lee JK. Measurement of angle kappa using ultrasound biomicroscopy and corneal topography. Korean J Ophthalmol 2017;31:257-62. doi:10.3341/kjo.2016.0021.

Cervantes-Coste G, Tapia A, Corredor-Ortega C, et al. The influence of angle alpha, angle kappa, and optical aberrations on visual outcomes after the implantation of a high-addition trifocal IOL. J Clin Med 2022;11:896. doi:10.3390/jcm11030896.

Hernández-López I, Estradé-Fernández S, Cárdenas-Díaz T, Batista-Leyva AJ. Biometry, refractive errors, and the results of cataract surgery: a large sample study. J Ophthalmol 2021;2021. doi:10.1155/2021/9918763.

Suliman A, Rubin A. A review of higher order aberrations of the human eye. Afr Vis Eye Heal 2019;78:a501. DOI:

Unterhorst H, Rubin A. Ocular aberrations and wavefront aberrometry: A review. Afr Vis Eye Heal 2015;21:1-6. DOI:

Lee S, Choi H, Kim M, Wee W. Correlation of angle kappa with ocular biometric parameters in Korean: strong correlation between angle kappa and axial length. Invest Ophthalmol Vis Sci 2016;57:5749.

Hartwig A, Atchison D. Analysis of higher-order aberrations in a large clinical population. Invest Ophthalmol Vis Sci 2012;53:7862-70. doi: 10.1167/iovs.12-10610.

Xu J, Lin P, Zhang S, Lu Y, Zheng T. Risk factors associated with intraocular lens decentration after cataract surgery. Am J Ophthalmol 2022;242:88-95. doi:10.1016/j.ajo.2022.05.005.

Umesh Y, Kelini S, Pallavi J, Devika S. Measurement of change in angle kappa and its correlation with ocular biometric parameters pre- and post-phacoemulsification. Indian J Ophthalmol 2023;71:535-40. DOI:10.4103/ijo.IJO_1641_22.

Choi SR , Kim US. The correlation between angle kappa and ocular biometry in Koreans. Korean J Ophthalmol 2013;27:421-4. doi:10.3341/kjo.2013.27.6.421

Sandoval HP, Potvin R, Solomon KD. The effects of angle kappa on clinical results and patient-reported outcomes after implantation of a trifocal intraocular lens. Clin Ophthalmol 2022;16:1321-9. doi:10.2147/OPTH.S363536.

Buratto L, Brint S, Sacchi L. Cataract surgery introduction and preparation. New York: Slack Incorporated; 2014.

Baenninger PB, Rinert J, Bachmann LM, et al. Distribution of preoperative angle alpha and angle kappa values in patients undergoing multifocal refractive lens surgery based on a positive contact lens test. Graefe’s Arch Clin Exp Ophthalmol 2022;260:621-8. doi:10.1007/s00417-021-05403-w.

Ibrahim H, Gharieb H, Othman I. Angle ê measurement and its correlation with other ocular parameters in normal population by a new imaging modality. Optom Vis Sci 2022;99:580-8. doi:10.1097/OPX.0000000000001910.

Wang Q, Stoakes I, Moshirfar M, Harvey D, Hoopes P. Assessment of pupil size and angle kappa in refractive surgery: a population-based epidemiological study in predominantly American Caucasians. Cureus 2023;15:e43998. doi:10.7759/cureus.43998.

Meng J, Du Y, Wei L, et al. Distribution of angle á and angle ê in a population with cataract in Shanghai. J Cataract Refract Surg 2021;47:579-84. doi:10.1097/j.jcrs.0000000000000490.

Karhanová M, Pluháèek F, Mlèák P, Vláèil O, Šín M, Marešová K. The importance of angle kappa evaluation for implantation of diffractive multifocal intra-ocular lenses using pseudophakic eye model. Acta Ophthalmol 2015;93:e123-8. doi:10.1111/aos.12521.

Deng WQ, Cui H, Li ZR, et al. Dynamic distribution of angle kappa and its biomechanical relationships in population who are suitable for excimer laser refractive surgery. Res Sq 2020:1-17. doi:10.21203/

Velasco-Barona C, Corredor-Ortega C, Mendez-Leon A, et al. Influence of angle and higher-order aberrations on visual quality employing two diffractive trifocal IOLs. J Ophthalmol 2019;2019. doi:10.1155/2019/7018937.